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Abstract The emphasis of this introductory course is on pluripotential methods in
complex dynamics in higher dimension. They are based on the compactness prop-
erties of plurisubharmonic (p.s.h.) functions and on the theory of positive closed
currents. Applications of these methods are not limited to the dynamical systems
that we consider here. Nervertheless, we choose to show their effectiveness and to
describe the theory for two large families of maps: the endomorphisms of projective
spaces and the polynomial-like mappings. The first section deals with holomorphic
endomorphisms of the projective space Pk. We establish the first properties and give
several constructions for the Green currents T p and the equilibrium measure µ = T k.
The emphasis is on quantitative properties and speed of convergence. We then treat
equidistribution problems. We show the existence of a proper algebraic set E , totally
invariant, i.e. f−1(E ) = f (E ) = E , such that when a "∈ E , the probability measures,
equidistributed on the fibers f−n(a), converge towards the equilibrium measure µ ,
as n goes to infinity. A similar result holds for the restriction of f to invariant sub-
varieties. We survey the equidistribution problem when points are replaced with
varieties of arbitrary dimension, and discuss the equidistribution of periodic points.
We then establish ergodic properties of µ : K-mixing, exponential decay of correla-
tions for various classes of observables, central limit theorem and large deviations
theorem. We heavily use the compactness of the space DSH(Pk) of differences of
quasi-p.s.h. functions. In particular, we show that the measure µ is moderate, i.e.
〈µ ,eα |ϕ|〉 ≤ c, on bounded sets of ϕ in DSH(Pk), for suitable positive constants
α,c. Finally, we study the entropy, the Lyapounov exponents and the dimension
of µ . The second section develops the theory of polynomial-like maps, i.e. proper
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holomorphic maps f : U → V where U,V are open subsets of Ck with V convex
and U ! V . We introduce the dynamical degrees for such maps and construct the
equilibrium measure µ of maximal entropy. Then, under a natural assumption on
the dynamical degrees, we prove equidistribution properties of points and various
statistical properties of the measure µ . The assumption is stable under small pertu-
bations on the map. We also study the dimension of µ , the Lyapounov exponents
and their variation. Our aim is to get a self-contained text that requires only a min-
imal background. In order to help the reader, an appendix gives the basics on p.s.h.
functions, positive closed currents and super-potentials on projective spaces. Some
exercises are proposed and an extensive bibliography is given.

Introduction

These notes are based on a series of lectures given by the authors at IHP in 2003,
Luminy in 2007, Cetraro in 2008 and Bedlewo 2008. The purpose is to provide an
introduction to some developments in dynamics of several complex variables. We
have chosen to treat here only two sections of the theory: the dynamics of endomor-
phisms of the projective space Pk and the dynamics of polynomial-like mappings
in higher dimension. Besides the basic notions and results, we describe the recent
developments and the new tools introduced in the theory. These tools are useful
in other settings. We tried to give a complete picture of the theory for the above
families of dynamical systems. Meromorphic maps on compact Kähler manifolds,
in particular polynomial automorphisms of Ck, will be studied in a forthcoming
survey.

Let us comment on how complex dynamics fits in the general theory of
dynamical systems. The abstract ergodic theory is well-developed with remark-
able achievements like the Oseledec-Pesin theory. It is however difficult to show in
concrete examples that an invariant measure satisfies exponential decay of corre-
lations for smooth observables or is hyperbolic, i.e. has only non-zero Lyapounov
exponents, see e.g. Benedicks-Carleson [BC], Viana [V], L.S. Young [Y, Y1]. One
of our goals is to show that holomorphic dynamics in several variables provides
remarkable examples of non-uniformly hyperbolic systems where the abstract the-
ory can be applied. Powerful tools from the theory of several complex variables
permit to avoid delicate combinatorial estimates. Complex dynamics also require a
development of new tools like the calculus on currents and the introduction of new
spaces of observables, which are of independent interest.

Complex dynamics in dimension one, i.e. dynamics of rational maps on P1,
is well-developed and has in some sense reached maturity. The main tools there
are Montel’s theorem on normal families, the Riemann measurable mapping theo-
rem and the theory of quasi-conformal maps, see e.g. Beardon, Carleson-Gamelin
[BE, CG]. When dealing with maps in several variables such tools are not available:
the Kobayashi hyperbolicity of a manifold and the possibility to apply normal fam-
ily arguments, are more difficult to check. Holomorphic maps in several variables
are not conformal and there is no Riemann measurable mapping theorem.
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The theory in higher dimension is developed using mostly pluripotential theory,
i.e. the theory of plurisubharmonic (p.s.h. for short) functions and positive closed
currents. The Montel’s compactness property is replaced with the compactness
properties of p.s.h. or quasi-p.s.h. functions. Another crucial tool is the use of good
estimates for the ddc-equation in various settings. One of the main ideas is: in order
to study the statistical behavior of orbits of a holomorphic map, we consider its ac-
tion on some appropriate functional spaces. We then decompose the action into the
“harmonic” part and the “non-harmonic” one. This is done solving a ddc-equation
with estimates. The non-harmonic part of the dynamical action may be controled
thanks to good estimates for the solutions of a ddc-equation. The harmonic part can
be treated using either Harnack’s inequality in the local setting or the linear action of
maps on cohomology groups in the case of dynamics on compact Kähler manifolds.
This approach has permitted to give a satisfactory theory of the ergodic properties
of holomorphic and meromorphic dynamical systems: construction of the measure
of maximal entropy, decay of correlations, central limit theorem, large deviations
theorem, etc. with respect to that measure.

In order to use the pluripotential methods, we are led to develop the calculus
on positive closed currents. Readers not familiar with these theories may start with
the appendix at the end of these notes where we have gathered some notions and
results on currents and pluripotential theory. A large part in the appendix is classical
but there are also some recent results, mostly on new spaces of currents and on the
notion of super-potential associated to positive closed currents in higher bidegree.
Since we only deal here with projective spaces and open sets in Ck, this is easier
and the background is limited.

The main problem in the dynamical study of a map is to understand the behavior
of the orbits of points under the action of the map. Simple examples show that in
general there is a set (Julia set) where the dynamics is unstable: the orbits may di-
verge exponentially. Moreover, the geometry of the Julia set is in general very wild.
In order to study complex dynamical systems, we follow the classical concepts. We
introduce and establish basic properties of some invariants associated to the system,
like the topological entropy and the dynamical degrees which are the analogues
of volume growth indicators in the real dynamical setting. These invariants give a
rough classification of the system. The remarkable fact in complex dynamics is that
they can be computed or estimated in many non-trivial situations.

A central question in dynamics is to construct interesting invariant measures,
in particular, measures with positive entropy. Metric entropy is an indicator of the
complexity of the system with respect to an invariant measure. We focus our study
on the measure of maximal entropy. Its support is in some sense the most chaotic
part of the system. For the maps we consider here, measures of maximal entropy
are constructed using pluripotential methods. For endomorphisms in Pk, they can
be obtained as self-intersections of some invariant positive closed (1,1)-currents
(Green currents). We give estimates on the Hausdorff dimension and on Lyapounov
exponents of these measures. The results give the behavior on the most chaotic part.
Lyapounov exponents are shown to be strictly positive. This means in some sense
that the system is expansive in all directions, despite of the existence of a critical set.
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Once, the measure of maximal entropy is constructed, we study its fine dynamical
properties. Typical orbits can be observed using test functions. Under the action
of the map, each observable provides a sequence of functions that can be seen as
dependent random variables. The aim is to show that the dependence is weak and
then to establish stochastic properties which are known for independent random
variables in probability theory. Mixing, decay of correlations, central limit theorem,
large deviations theorems, etc. are proved for the measure of maximal entropy. It
is crucial here that the Green currents and the measures of maximal entropy are
obtained using an iterative process with estimates; we can then bound the speed of
convergence.

Another problem, we consider in these notes, is the equidistribution of periodic
points or of preimages of points with respect to the measure of maximal entropy. For
endomorphisms of Pk, we also study the equidistribution of varieties with respect to
the Green currents. Results in this direction give some informations on the rigidity
of the system and also some strong ergodic properties that the Green currents or the
measure of maximal entropy satisfy. The results we obtain are in spirit similar to a
second main theorem in value distribution theory and should be useful in order to
study the arithmetic analogues. We give complete proofs for most results, but we
only survey the equidistribution of hypersurfaces and results using super-potentials,
in particular, the equidistribution of subvarieties of higher codimension.

The text is organized as follows. In the first section, we study holomorphic endo-
morphisms of Pk. We introduce several methods in order to construct and to study
the Green currents and the Green measure, i.e. equilibrium measure or measure of
maximal entropy. These methods were not originally introduced in this setting but
here they are simple and very effective. The reader will find a description and the
references of the earlier approach in the ten years old survey by the second author
[S3]. The second section deals with a very large family of maps: polynomial-like
maps. In this case, f : U → V is proper and defined on an open set U , strictly con-
tained in a convex domain V of Ck. Holomorphic endomorphisms of Pk can be
lifted to a polynomial-like maps on some open set in Ck+1. So, we can consider
polynomial-like maps as a semi-local version of the endomorphisms studied in the
first section. They can appear in the study of meromorphic maps or in the dynamics
of transcendental maps. The reader will find in the end of these notes an appendix
on the theory of currents and an extensive bibliography. We have given exercises,
basically in each section, some of them are not straightforward.

1 Endomorphisms of Projective Spaces

In this section, we give the main results on the dynamics of holomorphic maps
on the projective space Pk. Several results are recent and some of them are new
even in dimension 1. The reader will find here an introduction to methods that can
be developed in other situations, in particular, in the study of meromorphic maps
on arbitrary compact Kähler manifolds. The main references for this section are
[BD1, BD2, DNS, DS9, DS10, FS1, S3].
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1.1 Basic Properties and Examples

Let f : Pk → Pk be a holomorphic endomorphism. Such a map is always induced
by a polynomial self-map F = (F0, . . . ,Fk) on Ck+1 such that F−1(0) = {0} and the
components Fi are homogeneous polynomials of the same degree d ≥ 1. Given an
endomorphism f , the associated map F is unique up to a multiplicative constant and
is called a lift of f to Ck+1. From now on, assume that f is non-invertible, i.e. the
algebraic degree d is at least 2. Dynamics of an invertible map is simple to study.
If π : Ck+1 \ {0}→ Pk is the natural projection, we have f ◦π = π ◦F. Therefore,
dynamics of holomorphic maps on Pk can be deduced from the polynomial case in
Ck+1. We will count preimages of points, periodic points, introduce Fatou and Julia
sets and give some examples.

It is easy to construct examples of holomorphic maps in Pk. The family of
homogeneous polynomial maps F of a given degree d is parametrized by a com-
plex vector space of dimension Nk,d := (k + 1)(d + k)!/(d!k!). The maps satisfy-
ing F−1(0) = {0} define a Zariski dense open set. Therefore, the parameter space
Hd(Pk), of holomorphic endomorphisms of algebraic degree d, is a Zariski dense
open set in PNk,d−1, in particular, it is connected.

If f : Ck → Ck is a polynomial map, we can extend f to Pk but the extension is
not always holomorphic. The extension is holomorphic when the dominant homo-
geneous part f + of f , satisfies ( f +)−1(0) = {0}. Here, if d is the maximal degree in
the polynomial expression of f , then f + is composed by the monomials of degree
d in the components of f . So, it is easy to construct examples using products of one
dimensional polynomials or their pertubations.

A general meromorphic map f : Pk → Pk of algebraic degree d is given in homo-
geneous coordinates by

f [z0 : · · · : zk] = [F0 : · · · : Fk],

where the components Fi are homogeneous polynomials of degree d without com-
mon factor, except constants. The map F := (F0, . . . ,Fk) on Ck+1 is still called a lift
of f . In general, f is not defined on the analytic set I = {[z]∈ Pk,F(z) = 0} which is
of codimension≥ 2 since the Fi’s have no common factor. This is the indeterminacy
set of f which is empty when f is holomorphic.

It is easy to check that if f is in Hd(Pk) and g is in Hd′(Pk), the composition f ◦g
belongs to Hdd′(Pk). This is in general false for meromorphic maps: the algebraic
degree of the composition is not necessarily equal to the product of the algebraic
degrees. It is enough to consider the meromorphic involution of algebraic degree k

f [z0 : · · · : zk] :=
[ 1

z0
: · · · :

1
zk

]
=
[ z0 . . . zk

z0
: · · · :

z0 . . .zk

zk

]
.

The composition f ◦ f is the identity map.
We say that f is dominant if f (Pk \ I) contains a non-empty open set. The space

of dominant meromorphic maps of algebraic degree d, is denoted by Md(Pk). It
is also a Zariski dense open set in PNk,d−1. A result by Guelfand, Kapranov and
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Zelevinsky shows that Md(Pk) \Hd(Pk) is an irreducible algebraic variety [GK].
We will be concerned in this section mostly with holomorphic maps. We show that
they are open and their topological degree, i.e. the number of points in a generic
fiber, is equal to dk. We recall here the classical Bézout’s theorem which is a central
tool for the dynamics in Pk.

Theorem 1.1 (Bézout). Let P1, . . . ,Pk be homogeneous polynomials in Ck+1 of de-
grees d1, . . . ,dk respectively. Let Z denote the set of common zeros of Pi, in Pk, i.e.
the set of points [z] such that Pi(z) = 0 for 1 ≤ i ≤ k. If Z is discrete, then the number
of points in Z, counted with multiplicity, is d1 . . .dk.

The multiplicity of a point a in Z can be defined in several ways. For instance,
if U is a small neighbourhood of a and if P′

i are generic homogeneous polynomials
of degrees di close enough to Pi, then the hypersurfaces {P′

i = 0} in Pk intersect
transversally. The number of points of the intersection in U does not depend on the
choice of P′

i and is the multiplicity of a in Z.

Proposition 1.2. Let f be an endomorphism of algebraic degree d of Pk. Then for
every a in Pk, the fiber f−1(a) contains exactly dk points, counted with multiplicity.
In particular, f is open and defines a ramified covering of degree dk.

Proof. For the multiplicity of f and the notion of ramified covering, we refer to Ap-
pendix A.1. Let f = [F0 : · · · : Fk] be an expression of f in homogeneous coordinates.
Consider a point a = [a0 : · · · : ak] in Pk. Without loss of generality, we can assume
a0 = 1, hence a = [1 : a1 : · · · : ak]. The points in f−1(a) are the common zeros, in
Pk, of the polynomials Fi −aiF0 for i = 1, . . . ,k.

We have to check that the common zero set is discrete, then Bézout’s theorem
asserts that the cardinality of this set is equal to the product of the degrees of Fi −
aiF0, i.e. to dk. If the set were not discrete, then the common zero set of Fi − aiF0
in Ck+1 is analytic of dimension ≥ 2. This implies that the set of common zeros of
the Fi’s, 0 ≤ i ≤ k, in Ck+1 is of positive dimension. This is impossible when f is
holomorphic. So, f is a ramified covering of degree dk. In particular, it is open.

Note that when f is a map in Md(Pk)\Hd(Pk) with indeterminacy set I, we can
prove that the generic fibers of f : Pk \ I →Pk contains at most dk−1 points. Indeed,
for every a, the hypersurfaces {Fi −aiF0 = 0} in Pk contain I. +,

Periodic points of order n, i.e. points which satisfy f n(z) = z, play an important
role in dynamics. Here, f n := f ◦ · · · ◦ f , n times, is the iterate of order n of f .
Periodic points of order n of f are fixed points of f n which is an endomorphism
of algebraic degree dn. In the present case, their counting is simple. We have the
following result.

Proposition 1.3. Let f be an endomorphism of algebraic degree d ≥ 2 in Pk. Then
the number of fixed points of f , counted with multiplicity, is equal to (dk+1 − 1)/
(d−1). In particular, the number of periodic points of order n of f is dkn + o(dkn).
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Proof. There are several methods to count the periodic points. In Pk+1, with
homogeneous coordinates [z : t] = [z0 : · · · : zk : t], we consider the system of equa-
tions Fi(z)− td−1zi = 0. The set is discrete since it is analytic and does not intersect
the hyperplane {t = 0}. So, we can count the solutions of the above system using
Bézout’s theorem and we find dk+1 points counting with multiplicity. Each point
[z : t] in this set, except [0 : · · · : 0 : 1], corresponds to a fixed point [z] of f . The
correspondence is d −1 to 1. Indeed, if we multiply t by a (d −1)-th root of unity,
we get the same fixed point. Hence, the number of fixed points of f counted with
multiplicity is (dk+1 −1)/(d−1).

The number of fixed points of f is also the number of points in the intersection of
the graph of f with the diagonal of Pk ×Pk. So, we can count these points using the
cohomology classes associated to the above analytic sets, i.e. using the Lefschetz
fixed point formula, see [GH]. We can also observe that this number depends con-
tinuously on f . So, it is constant for f in Hd(Pk) which is connected. We obtain the
result by counting the fixed points of an example, e.g. for f [z] = [zd

0 : · · · : zd
k ]. +,

Note that the periodic points of period n are isolated. If p is such a point, a
theorem due to Shub-Sullivan [KH, p.323] implies that the multiplicity at p of the
equation f mn(p) = p is bounded independently on m. The result holds for C 1 maps.
We deduce from the above result that f admits infinitely many distinct periodic
points.

The set of fixed points of a meromorphic map could be empty or infinite. One
checks easily that the map (z1,z2) .→ (z2

1,z2) in C2 admits {z1 = 0} as a curve of
fixed points.

Example 1.4. Consider the following map:

f (z1,z2) := (z1 + 1,P(z1,z2)),

where P is a homogeneous polynomial of degree d ≥ 2 such that P(0,1) = 0. It is
clear that f has no periodic point in C2. The meromorphic extension of f is given
in homogeneous coordinates [z0 : z1 : z2] by

f [z] = [zd
0 : zd−1

0 z1 + zd
0 : P(z1,z2)].

Here, C2 is identified to the open set {z0 = 1} of P2. The indeterminacy set I of f is
defined by z0 = P(z1,z2) = 0 and is contained in the line at infinity L∞ := {z0 = 0}.
We have f (L∞ \ I) = [0 : 0 : 1] which is an indeterminacy point. So, f : P2 \ I → P2

has no periodic point.

Example 1.5. Consider the holomorphic map f on P2 given by

f [z] := [zd
0 + P(z1,z2) : zd

2 +λ zd−1
0 z1 : zd

1 ],

with P homogeneous of degree d ≥ 2. Let p := [1 : 0 : 0], then f−1(p) = p. Such a
point is called totally invariant. In general, p is not necessarily an attractive point.
Indeed, the eigenvalues of the differential of f at p are 0 and λ . When |λ |> 1, there
is an expansive direction for f in a neighbourhood of p. In dimension one, totally
invariant points are always attractive.
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For a holomorphic map f on Pk, a point a in Pk is critical if f is not injective in a
neighbourhood of a or equivalently the multiplicity of f at a in the fiber f−1( f (a)) is
strictly larger than 1, see Theorem A.3. We say that a is a critical point of multiplicity
m if the multiplicity of f at a in the fiber f−1( f (a)) is equal to m+ 1.

Proposition 1.6. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2
of Pk. Then, the critical set of f is an algebraic hypersurface of degree (k+1)(d−1)
counted with multiplicity.

Proof. If F is a lift of f to Ck+1, the Jacobian Jac(F) is a homogeneous polynomial
of degree (k +1)(d−1). The zero set of Jac(F) in Pk is exactly the critical set of f .
The result follows. +,

Let C denote the critical set of f . The orbit C , f (C ), f 2(C ), . . . is either a hyper-
surface or a countable union of hypersurfaces. We say that f is postcritically finite
if this orbit is a hypersurface, i.e. has only finitely many irreducible components.
Besides very simple examples, postcritically finite maps are difficult to construct,
because the image of a variety is often a variety of larger degree; so we have to
increase the multiplicity in order to get only finitely many irreducible components.
We give few examples of postcritically finite maps, see [FS, FS7].

Example 1.7. We can check that for d ≥ 2 and (1−2λ )d = 1

f [z0 : · · · : zk] := [zd
0 : λ (z0 −2z1)d : · · · : λ (z0 −2zk)d ]

is postcritically finite. For some parameters α ∈ C and 0 ≤ l ≤ d, the map

fα [z] := [zd
0 : zd

1 : zd
2 +αzd−l

1 zl
2]

is also postcritically finite. In particular, for f0[z] = [zd
0 : zd

1 : zd
2 ], the associated

critical set is equal to {z0z1z2 = 0} which is invariant under f0. So, f0 is postcriti-
cally finite.

Arguing as above, using Bézout’s theorem, we can prove that if Y is an an-
alytic set of pure codimension p in Pk then f−1(Y ) is an analytic set of pure
codimension p. Its degree, counting with multiplicity, is equal to d p deg(Y ). Re-
call that the degree deg(Y ) of Y is the number of points in the intersection of Y
with a generic projective subspace of dimension p. We deduce that the pull-back
operator f ∗ on the Hodge cohomology group H p,p(Pk,C) is simply a multiplication
by d p. Since f is a ramified covering of degree dk, f∗ ◦ f ∗ is the multiplication by
dk. Therefore, the push-forward operator f∗ acting on H p,p(Pk,C) is the multipli-
cation by dk−p. In particular, the image f (Y ) of Y by f is an analytic set of pure
codimension p and of degree dk−p deg(Y ), counted with multiplicity.

We now introduce the Fatou and Julia sets associated to an endomorphism. The
following definition is analogous to the one variable case.

Definition 1.8. The Fatou set of f is the largest open set F in Pk where the sequence
of iterates ( f n)n≥1 is locally equicontinuous. The complement J of F is called the
Julia set of f .
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Fatou and Julia sets are totally invariant by F , that is, f−1(F ) = f (F ) = F
and the same property holds for J . Julia and Fatou sets associated to f n are also
equal to J and F . We see here that the space Pk is divided into two parts: on F
the dynamics is stable and tame while the dynamics on J is a priori chaotic. If x is
a point in F and y is close enough to x, the orbit of y is close to the orbit of x when
the time n goes to infinity. On the Julia set, this property is not true. Attractive fixed
points and their basins are examples of points in the Fatou set. Siegel domains, i.e.
invariant domains on which f is conjugated to a rotation, are also in the Fatou set.
Repelling periodic points are always in the Julia set. Another important notion in
dynamics is the non-wandering set.

Definition 1.9. A point a in Pk is non-wandering with respect to f if for every neigh-
bourhood U of a, there is an n ≥ 1 such that f n(U)∩U "= ∅.

The study of the Julia and Fatou sets is a fundamental problem in dynamics. It
is quite well-understood in the one variable case where the Riemann measurable
theorem is a basic tool. The help of computers is also important there. In higher
dimension, Riemann measurable theorem is not valid and the use of computers is
more delicate. The most important tool in higher dimension is pluripotential theory.

For instance, Fatou and Julia sets for a general map are far from being
understood. Many fundamental questions are still open. We do not know if wan-
dering Fatou components exist in higher dimension. In dimension one, a theorem
due to Sullivan [SU] says that such a domain does not exist. The classification of
Fatou components is not known, see [FS8] for a partial answer in dimension 2
and [FS, S3, U] for the case of postcritically finite maps. The reader will find in
the survey [S3] some results on local dynamics near a fixed point, related to the
Fatou-Julia theory. We now give few examples.

The following construction is due to Ueda [U]. It is useful in order to obtain
interesting examples, in particular, to show that some properties hold for generic
maps. The strategy is to check that the set of maps satisfying these properties is a
Zariski open set in the space of parameters and then to produce an example using
Ueda’s construction.

Example 1.10. Let h : P1 → P1 be a rational map of degree d ≥ 2. Consider the
multi-projective space P1×·· ·×P1, k times. The permutations of coordinates define
a finite group Γ acting on this space and the quotient of P1 ×·· ·×P1 by Γ is equal
to Pk. Let Π : P1 ×·· ·×P1 → Pk denote the canonical projection. Let f̃ be the en-
domorphism of P1 ×·· ·×P1 defined by f̃ (z1, . . . ,zk) := (h(z1), . . . ,h(zk)). If σ is a
permutation of coordinates (z1, . . . ,zk), then σ ◦ f̃ = f̃ ◦σ . It is not difficult to deduce
that there is an endomorphism f on Pk of algebraic degree d semi-conjugated to f̃ ,
that is, f ◦Π =Π ◦ f̃ . One can deduce dynamical properties of f from properties of
h. For example, if h is chaotic, i.e. has a dense orbit, then f is also chaotic. The first
chaotic maps on P1 were constructed by Lattès. Ueda’s construction gives Lattès
maps in higher dimension. A Lattès map f on Pk is a map semi-conjugated to an
affine map on a torus. More precisely, there is an open holomorphic mapΨ : T→Pk

from a k-dimensional torus T onto Pk and an affine map A : T → T such that
f ◦Ψ =Ψ ◦A. We refer to [BR,BL,D4,DS0,MIL] for a discussion of Lattès maps.



174 Tien-Cuong Dinh and Nessim Sibony

The following map is the simplest in our context. Its iterates can be explicitely
computed. The reader may use this map and its pertubations as basic examples in
order to get a picture on the objects we will introduce latter.

Example 1.11. Let f : Ck → Ck be the polynomial map defined by

f (z1, . . . ,zk) := (zd
1 , . . . ,zd

k ), d ≥ 2.

We can extend f holomorphically to Pk. Let [z0 : · · · : zk] denote the homogeneous
coordinates on Pk such that Ck is identified to the chart {z0 "= 0}. Then, the extension
of f to Pk is

f [z0 : · · · : zk] = [zd
0 : · · · : zd

k ].

The Fatou set is the union of the basins of the k + 1 attractive fixed points
[0 : · · · : 0 : 1 : 0 : · · · : 0]. These components are defined by

Fi :=
{

z ∈ Pk, |z j| < |zi| for every j "= i
}
.

The Julia set of f is the union of the following sets Ji j with 0 ≤ i < j ≤ k, where

Ji j :=
{

z ∈ Pk, |zi| = |z j| and |zl | ≤ |zi| for every l
}
.

We have f n(z) = (zdn

1 , . . . ,zdn

k ) for n ≥ 1.

Exercise 1.12. Let h : P1 → P1 be a rational map. Discuss Fatou components for
the associated map f defined in Example 1.10. Prove in particular that there exist
Fatou components which are bi-holomorphic to a disc cross an annulus. Describe
the set of non-wandering points of f .

Exercise 1.13. Let a be a fixed point of f . Show that the eigenvalues of the differ-
ential D f of f at a do not depend on the local coordinates. Assume that a is in the
Fatou set. Show that these eigenvalues are of modulus ≤ 1. If all the eigenvalues are
of modulus 1, show that D f (a) is diagonalizable.

Exercise 1.14. Let f be a Lattès map associated to an affine map A as in Example
1.10. Show that f is postcritically finite. Show that d−1/2DA is an unitary matrix
where DA is the differential of A. Deduce that the orbit of a is dense in Pk for almost
every a in Pk. Show that the periodic points of f are dense in Pk.

Exercise 1.15. Let f : Pk → Pk be a dominant meromorphic map. Let I be the
indeterminacy set of f , defined as above. Show that f cannot be extended to a
holomorphic map on any open set which intersects I.

1.2 Green Currents and Julia Sets

Let f be an endomorphism of algebraic degree d ≥ 2 as above. In this paragraph, we
give the first construction of canonical invariant currents T p associated to f (Green
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currents). The construction is now classical and is used in most of the references,
see [FS1, FS3, HJ, S3]. We will show that the support of the Green (1,1)-current
is exactly the Julia set of f [FS1]. In some examples, Green currents describe the
distribution of stable varieties but in general their geometric structure is not yet
well-understood. We will see later that µ := T k is the invariant measure of maximal
entropy.

Theorem 1.16. Let S be a positive closed (1,1)-current of mass 1 on Pk. Assume
that S has bounded local potentials. Then d−n( f n)∗(S) converge weakly to a posi-
tive closed (1,1)-current T of mass 1. This current has continuous local potentials
and does not depend on S. Moreover, it is totally invariant: f ∗(T ) = dT and
f∗(T ) = dk−1T. We also have for a smooth (k−1,k−1)-formΦ

∣∣〈d−n( f n)∗(S)−T,Φ〉
∣∣≤ cd−n‖Φ‖DSH,

where c > 0 is a constant independent of Φ and of n.

Proof. We refer to Appendix for the basic properties of quasi-p.s.h. functions,
positive closed currents and DSH currents. Since S has mass 1, it is cohomologous
to ωFS. Therefore, we can write S = ωFS + ddcu where u is a quasi-p.s.h. function.
By hypothesis, this function is bounded. The current d−1 f ∗(ωFS) is smooth and
of mass 1 since f ∗ : H1,1(Pk,C) → H1,1(Pk,C) is the multiplication by d and the
mass of a positive closed current can be computed cohomologically. So, we can
also write d−1 f ∗(ωFS) = ωFS + ddcv where v is a quasi-p.s.h. function. Here, v is
smooth since ωFS and f ∗(ωFS) are smooth. We have

d−1 f ∗(S) = d−1 f ∗(ωFS)+ ddc(d−1u ◦ f
)

= ωFS + ddcv + ddc(d−1u ◦ f
)
.

By induction, we obtain

d−n( f n)∗(S) = ωFS + ddc(v + · · ·+ d−n+1v◦ f n−1)+ ddc(d−nu ◦ f n).

Observe that, since v is smooth, the sequence of smooth functions v+ · · ·+d−n+1v◦
f n−1 converges uniformly to a continuous function g. Since u is bounded, the func-
tions d−nu ◦ f n tend to 0. It follows that d−n( f n)∗(S) converge weakly to a current
T which satisfies

T = ωFS + ddcg.

From the definition, we also have

d−1g◦ f + v = g.

Clearly, this current does not depend on S since g does not depend on S. Moreover,
the currents d−n( f n)∗(S) are positive closed of mass 1. So, T is also a positive
closed current of mass 1. We deduce that g is quasi-p.s.h. since it is continuous and
satisfies ddcg≥−ωFS.
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Applying the above computation to T instead of S, we obtain that

d−1 f ∗(T ) = ωFS + ddcv + ddc(d−1g◦ f
)
= ωFS + ddcg.

Hence, f ∗(T ) = dT . On smooth forms f∗ ◦ f ∗ is equal to dk times the identity; this
holds by continuity for positive closed currents. Therefore,

f∗(T ) = f∗( f ∗(d−1T )) = dk−1T.

It remains to prove the estimate in the theorem. Recall that we can write ddcΦ =
R+−R− where R± are positive measures such that ‖R±‖ ≤ ‖Φ‖DSH. We have
∣∣〈d−n( f n)∗(S)−T,Φ〉

∣∣ =
∣∣〈ddc(v + · · ·+ d−n+1v◦ f n−1 + d−nu ◦ f n −g),Φ〉

∣∣

=
∣∣〈v + · · ·+ d−n+1v◦ f n−1 + d−nu ◦ f n −g,ddcΦ〉

∣∣

=
∣∣〈d−nu ◦ f n −∑

i≥n
d−iv◦ f i,R+−R−〉∣∣.

Since u and v are bounded, the mass estimate for R± implies that the last integral is
" d−n‖Φ‖DSH. The result follows. +,

Theorem 1.16 gives a convergence result for S quite diffuse (with bounded po-
tentials). It is like the first main theorem in value distribution theory. The question
that we will address is the convergence for singular S, e.g. hypersurfaces.

Definition 1.17. We call T the Green (1,1)-current and g the Green function of f .
The power T p := T ∧ . . .∧ T , p factors, is the Green (p, p)-current of f , and its
support Jp is called the Julia set of order p.

Note that the Green function is defined up to an additive constant and since
T has a continuous quasi-potential, T p is well-defined. Green currents are totally
invariant: we have f ∗(T p) = d pT p and f∗(T p) = dk−pT p. The Green (k,k)-current
µ := T k is also called the Green measure, the equilibrium measure or the measure
of maximal entropy. We will give in the next paragraphs results which justify the
terminologies. The iterates f n, n ≥ 1, have the same Green currents and Green
function. We have the following result.

Proposition 1.18. The local potentials of the Green current T are γ-Hölder contin-
uous for every γ such that 0 < γ < min(1, logd/ logd∞), where d∞ := lim‖D f n‖1/n

∞ .
In particular, the Hausdorff dimension of T p is strictly larger than 2(k− p) and T p

has no mass on pluripolar sets and on proper analytic sets of Pk.

Since D f n+m(x) = D f m( f n(x)) ◦ D f n(x), it is not difficult to check that the
sequence ‖D f n‖1/n

∞ is decreasing. So, d∞ = inf‖D f n‖1/n
∞ . The last assertion of the

proposition is deduced from Corollary A.32 and Proposition A.33 in Appendix.
The first assertion is equivalent to the Hölder continuity of the Green function g, it
was obtained by Sibony [SI] for one variable polynomials and by Briend [BJ] and
Kosek [KO] in higher dimension.
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The following lemma, due to Dinh-Sibony [DS4, DS10], implies the above
proposition and can be applied in a more general setting. Here, we apply it to
Λ := f m with m large enough and to the above smooth function v. We choose
α := 1, A := ‖D f m‖∞ and d is replaced with dm.

Lemma 1.19. Let K be a metric space with finite diameter and Λ : K → K be a
Lipschitz map: ‖Λ(a)−Λ(b)‖ ≤ A‖a− b‖ with A > 0. Here, ‖a− b‖ denotes the
distance between two points a, b in K. Let v be an α-Hölder continuous function on
K with 0 < α ≤ 1. Then, ∑n≥0 d−nv◦Λn converges pointwise to a function which is
β -Hölder continuous on K for every β such that 0 < β < α and β ≤ logd/ logA.

Proof. By hypothesis, there is a constant A′>0 such that |v(a)− v(b)|≤A′‖a−b‖α .
Define A′′ := ‖v‖∞. Since K has finite diameter, A′′ is finite and we only have to
consider the case where ‖a−b‖3 1. If N is an integer, we have

∣∣∣∣∣∑n≥0
d−nv◦Λn(a)−∑

n≥0
d−nv◦Λn(b)

∣∣∣∣∣

≤ ∑
0≤n≤N

d−n|v◦Λn(a)− v◦Λn(b)|+ ∑
n>N

d−n|v◦Λn(a)− v◦Λn(b)|

≤ A′ ∑
0≤n≤N

d−n‖Λn(a)−Λn(b)‖α + 2A′′ ∑
n>N

d−n

" ‖a−b‖α ∑
0≤n≤N

d−nAnα + d−N .

If Aα ≤ d, the last sum is of order at most equal to N‖a− b‖α + d−N . For a given
0 < β < α , choose N 4−β log‖a−b‖/ logd. So, the last expression is " ‖a−b‖β .
In this case, the function is β -Hölder continuous for every 0 < β < α . When
Aα > d, the sum is " d−NANα‖a− b‖α + d−N . For N 4 − log‖a− b‖/ logA, the
last expression is " ‖a − b‖β with β := logd/ logA. Therefore, the function is
β -Hölder continuous. +,

Remark 1.20. Lemma 1.19 still holds for K with infinite diameter if v is Hölder
continuous and bounded. We can also replace the distance on K with any pos-
itive symmetric function on K × K which vanishes on the diagonal. Consider a
family ( fs) of endomorphisms of Pk depending holomorphically on s in a space
of parameters Σ . In the above construction of the Green current, we can locally
on Σ , choose vs(z) smooth such that ddc

s,zvs(z) ≥ −ωFS(z). Lemma 1.19 implies
that the Green function gs(z) of fs is locally Hölder continuous on (s,z) in Σ ×Pk.
Then, ωFS(z)+ ddc

s,zgs(z) is a positive closed (1,1)-current on Σ ×Pk. Its slices by
{s}×Pk are the Green currents Ts of fs.

We want to use the properties of the Green currents in order to establish some
properties of the Fatou and Julia sets. We will show that the Julia set coincides
with the Julia set of order 1. We recall the notion of Kobayashi hyperbolicity on
a complex manifold M. Let p be a point in M and ξ a tangent vector of M at
p. Consider the holomorphic maps τ : ∆ → M on the unit disc ∆ in C such that
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τ(0) = p and Dτ(0) = cξ where Dτ is the differential of τ and c is a constant. The
Kobayashi-Royden pseudo-metric is defined by

KM(p,ξ ) := inf
τ
|c|−1.

It measures the size of a disc that one can send in M. In particular, if M contains an
image of C passing through p in the direction ξ , we have KM(p,ξ ) = 0.

Kobayashi-Royden pseudo-metric is contracting for holomorphic maps: if
Ψ : N → M is a holomorphic map between complex manifolds, we have

KM(Ψ(p),DΨ (p) ·ξ )≤ KN(p,ξ ).

The Kobayashi-Royden pseudo-metric on ∆ coincides with the Poincaré metric.
A complex manifold M is Kobayashi hyperbolic if KM is a metric [K]. In which
case, holomorphic self-maps of M, form a locally equicontinuous family of maps.
We have the following result where the norm of ξ is with respect to a smooth metric
on X .

Proposition 1.21. Let M be a relatively compact open set of a compact complex
manifold X. Assume that there is a bounded function ρ on M which is strictly p.s.h.,
i.e. ddcρ ≥ω on M for some positive Hermitian form ω on X. Then M is Kobayashi
hyperbolic and hyperbolically embedded in X. More precisely, there is a constant
λ > 0 such that KM(p,ξ ) ≥ λ‖ξ‖ for every p ∈ M and every tangent vector ξ of M
at p.

Proof. If not, we can find holomorphic discs τn : ∆ → M such that ‖Dτn(0)‖ ≥ n for
n ≥ 1. So, this family is not equicontinuous. A lemma due to Brody [K] says that, after
reparametrization, there is a subsequence converging to an image of C in M. More
precisely, up to extracting a subsequence, there are holomorphic mapsΨn : ∆n → ∆
on discs ∆n centered at 0, of radius n, such that τn ◦Ψn converge locally uniformly
to a non-constant map τ∞ : C → M. Since ρ is bounded, up to extracting a subse-
quence, the subharmonic functions ρn := ρ ◦ τn ◦Ψn converge in L1

loc(C) to some
subharmonic function ρ∞. Since the function ρ∞ is bounded, it should be constant.

For simplicity, we use here the metric on X induced by ω . Let L,K be arbitrary
compact subsets of C such that L ! K. For n large enough, the area of τn(Ψn(L))
counted with multiplicity, satisfies

area(τn(Ψn(L))) =
∫

L
(τn ◦Ψn)∗(ω) ≤

∫

L
ddcρn.

We deduce that

area(τ∞(L)) = lim
n→∞

area(τn(Ψn(L))) ≤
∫

K
ddcρ∞ = 0.

This is a contradiction. +,

The following result was obtained by Fornæss-Sibony in [FS3,FS2] and by Ueda
for the assertion on the Kobayashi hyperbolicity of the Fatou set [U2].
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Theorem 1.22. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Then,
the Julia set of order 1 of f , i.e. the support J1 of the Green (1,1)-current T ,
coincides with the Julia set J . The Fatou set F is Kobayashi hyperbolic and
hyperbolically embedded in Pk. Moreover, for p ≤ k/2, the Julia set of order p of f
is connected.

Proof. The sequence ( f n) is equicontinuous on the Fatou set F and f n are holomor-
phic, hence the differential D f n are locally uniformly bounded on F . Therefore,
( f n)∗(ωFS) are locally uniformly bounded on F . We deduce that d−n( f n)∗(ωFS)
converge to 0 on F . Hence, T is supported on the Julia set J .

Let F ′ denote the complement of the support of T in Pk. Observe that F ′ is
invariant under f n and that −g is a smooth function which is strictly p.s.h. on F ′.
Therefore, by Proposition 1.21, F ′ is Kobayashi hyperbolic and hyperbolically
embedded in Pk. Therefore, the maps f n, which are self-maps of F ′, are equicon-
tinuous with respect to the Kobayashi-Royden metric. On the other hand, the fact
that F ′ is hyperbolically embedded implies that the Kobayashi-Royden metric is
bounded from below by a constant times the Fubini-Study metric. It follows that
( f n) is locally equicontinuous on F ′ with respect to the Fubini-Study metric. We
conclude that F ′ ⊂ F , hence F = F ′ and J = supp(T ) = J1.

In order to show that Jp are connected, it is enough to prove that if S is a
positive closed current of bidegree (p, p) with p ≤ k/2 then the support of S is con-
nected. Assume that the support of S is not connected, then we can write S = S1 +S2
with S1 and S2 non-zero, positive closed with disjoint supports. Using a convolu-
tion on the automorphism group of Pk, we can construct smooth positive closed
(p, p)-forms S′1,S

′
2 with disjoint supports. So, we have S′1 ∧S′2 = 0. This contradicts

that the cup-product of the classes [S′1] and [S′2] is non-zero in H2p,2p(Pk,R) 4 R:
we have [S′1] = ‖S′1‖[ω

p
FS], [S′2] = ‖S′2‖[ω

p
FS] and [S′1] ! [S′2] = ‖S′1‖‖S′2‖[ω

2p
FS ], a

contradiction. Therefore, the support of S is connected. +,

Example 1.23. Let f be a polynomial map of algebraic degree d ≥ 2 on Ck which
extends holomorphically to Pk. If B is a ball large enough centered at 0, then
f−1(B) ! B. Define Gn := d−n log+ ‖ f n‖, where log+ := max(log,0). As in
Theorem 1.16, we can show that Gn converge uniformly to a continuous p.s.h.
function G such that G ◦ f = dG. On Ck, the Green current T of f is equal to
ddcG and T p = (ddcG)p. The Green measure is equal to (ddcG)k. If K denotes
the set of points in Ck with bounded orbit, then µ is supported on K . Indeed,
outside K we have G = limd−n log‖ f n‖ and the convergence is locally uniform. It
follows that (ddcG)k = limd−kn(ddc log‖ f n‖)k on Ck \K . One easily check that
(ddc log‖ f n‖)k = 0 out of f−n(0). Therefore, (ddcG)k = 0 on Ck \K . The set K
is called the filled Julia set. We can show that K is the zero set of G. In particular,
if f (z) = (zd

1 , . . . ,zd
k ), then G(z) = supi log+ |zi|. One can check that the support of

T p is foliated (except for a set of zero measure with respect to the trace of T p) by
stable manifolds of dimension k− p and that µ = T k is the Lebesgue measure on
the torus {|zi| = 1, i = 1, . . . ,k}.

Example 1.24. We consider Example 1.10. Let ν be the Green measure of h on P1,
i.e. ν = limd−n(hn)∗(ωFS). Here, ωFS denotes also the Fubini-Study form on P1.
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Let πi denote the projections of P1×·· ·×P1 on the factors. Then, the Green current
of f is equal to

T =
1
k!
π∗
(
π∗1 (ν)+ · · ·+π∗k (ν)

)
,

as can be easily checked.

Example 1.25. The following family of maps on P2 was studied in [FS6]:

f [z0 : z1 : z2] := [zd
0 +λ z0zd−1

1 ,ν(z1 −2z2)d + czd
0 : zd

1 + czd
0].

For appropriate choices of the parameters c and λ , one can show that supp(T ) and
supp(µ) coincide. Moreover, f has an attracting fixed point, so the Fatou set is not
empty. Observe that the restriction of f to the projective line {z0 = 0}, for appropri-
ate ν , is chaotic, i.e. has dense orbits. One shows that {z0 = 0} is in the support of
µ and that for appropriate m, P2 \∪m

i=0 f−i{z0 = 0} is Kobayashi hyperbolic. Hence
using the total invariance of supp(µ), we get that the complement of supp(µ) is in
the Fatou set. It is possible to choose the parameters so that P2 \ supp(µ) contains
an attractive fixed point. Several other examples are discussed in [FS6]. For exam-
ple it is possible that supp(T ) has non-empty interior and the Fatou set has also
non-empty interior. The situation is then quite different from the one variable case,
where either the Julia set is equal to P1 or it has empty interior.

We now give a characterization of the Julia sets in term of volume growth. There
is an interesting gap in the possible volume growth.

Proposition 1.26. Let f be a holomorphic endomorphism of algebraic degree
d ≥ 2 of Pk. Let T be its Green (1,1)-current. Then the following properties are
equivalent:

1. x is a point in the Julia set of order p, i.e. x ∈ Jp := supp(T p);
2. For every neighbourhood U of x, we have

liminf
n→∞

d−pn
∫

U
( f n)∗(ω p

FS)∧ωk−p
FS "= 0;

3. For every neighbourhood U of x, we have

limsup
n→∞

d−(p−1)n
∫

U
( f n)∗(ω p

FS)∧ω
k−p
FS = +∞.

Proof. We have seen in Theorem 1.16 that d−n( f n)∗(ωFS) converges to T when n
goes to infinity. Moreover, d−n( f n)∗(ωFS) admits a quasi-potential which converges
uniformly to a quasi-potential of T . It follows that limd−pn( f n)∗(ω p

FS) = T p. We
deduce that Properties 1) and 2) are equivalent. Since 2) implies 3), it remains to
show that 3) implies 1). For this purpose, it is enough to show that for any open set
V with V ∩Jp = ∅,

∫

V
( f n)∗(ω p

FS)∧ωk−p
FS = O(d(p−1)n).
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This is a consequence of a more general inequality in Theorem 1.112 below. We
give here a direct proof.

Since (ωFS +ddcg)p = 0 on Pk \Jp, we can write thereω p
FS = ddcg∧(S+−S−)

where S± are positive closed (p−1, p−1)-currents on Pk. Let χ be a cut-off func-
tion with compact support in Pk \Jp and equal to 1 on V . The above integral is
bounded by
∫

Pk
χ( f n)∗

(
ddcg∧(S+−S−)

)
∧ωk−p

FS =
∫

Pk
ddcχ∧(g◦ f n)( f n)∗(S+−S−)∧ωk−p

FS .

Since g is bounded, the last integral is bounded by a constant times ‖( f n)∗(S+)‖+
‖( f n)∗(S−)‖. We conclude using the identity ‖( f n)∗(S±)‖ = d(p−1)n‖S±‖. +,

The previous proposition suggests a notion of local dynamical degree. Define

δp(x,r) := limsup
n→∞

(∫

B(x,r)
( f n)∗(ω p

FS)∧ωk−p
FS

)1/n

and
δp(x) := inf

r>0
δp(x,r) = lim

r→0
δp(x,r).

It follows from the above proposition that δp(x) = d p for x ∈ Jp and δp(x) = 0 for
x "∈ Jp. This notion can be extended to general meromorphic maps or correspon-
dences and the sub-level sets {δp(x) ≥ c} can be seen as a kind of Julia sets.

Exercise 1.27. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Suppose
a subsequence ( f ni) is equicontinuous on an open set U . Show that U is contained
in the Fatou set.

Exercise 1.28. Let f and g be two commuting holomorphic endomorphisms of Pk,
i.e. f ◦g = g◦ f . Show that f and g have the same Green currents. Deduce that they
have the same Julia and Fatou sets.

Exercise 1.29. Determine the Green (1,1)-current and the Green measure for the
map f in Example 1.11. Study the lamination on supp(T p) \ supp(T p+1). Express
the current T p on that set as an integral on appropriate manifolds.

Exercise 1.30. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk and T its
Green (1,1)-current. Consider the family of maps τ : ∆ → Pk such that τ∗(T ) = 0.
The last equation means that if u is a local potential of T , i.e. ddcu = T on some open
set, then ddcu◦τ = 0 on its domain of definition. Show that the sequence ( f n

|τ(∆ ))n≥1

is equicontinuous. Prove that there is a constant c > 0 such that ‖Dτ(0)‖ ≤ c for
every τ as above (this property holds for any positive closed (1,1)-current T with
continuous potentials). Find the corresponding discs for f as in Exercise 1.29.
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Exercise 1.31. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Let X
be an analytic set of pure dimension p in an open set U ⊂ Pk. Show that for every
compact K ⊂U

limsup
n→∞

1
n

logvolume( f n(X ∩K)) ≤ p logd.

Hint. For an appropriate cut-off function χ , estimate
∫

X χ( f n)∗(ω p
FS).

1.3 Other Constructions of the Green Currents

In this paragraph, we give other methods, introduced and developped by the authors,
in order to construct the Green currents and Green measures for meromorphic maps.
We obtain estimates on the Perron-Frobenius operator and on the thickness of the
Green measure, that will be applied in the stochastic study of the dynamical system.
A key point here is the use of d.s.h. functions as observables.

We first present a recent direct construction of Green (p, p)-currents using super-
potentials1. Super-potentials are a tool in order to compute with positive closed
(p, p)-currents. They play the same role as potentials for bidegree (1,1) currents.
In dynamics, they are used in particular in the equidistribution problem for alge-
braic sets of arbitrary dimension and allow to get some estimates on the speed of
convergence.

Theorem 1.32. Let S be a positive closed (p, p)-current of mass 1 on Pk. Assume
that the super-potential of S is bounded. Then d−pn( f n)∗(S) converge to the Green
(p, p)-current T p of f . Moreover, T p has a Hölder continuous super-potential.

Sketch of proof. We refer to Appendix A.2 and A.4 for an introduction to super-
potentials and to the action of holomorphic maps on positive closed currents. Recall
that f ∗ and f∗ act on H p,p(Pk,C) as the multiplications by d p and dk−p respec-
tively. So, if S is a positive closed (p, p)-current of mass 1, then ‖ f ∗(S)‖ = d p and
‖ f∗(S)‖= dk−p since the mass can be computed cohomologically. LetΛ denote the
operator d−p+1 f∗ acting on Ck−p+1(Pk), the convex set of positive closed currents
of bidegree (k− p + 1,k− p + 1) and of mass 1. It is continuous and it takes values
also in Ck−p+1(Pk). Let V , U , Un denote the super-potentials of d−p f ∗(ω p

FS), S
and d−pn( f n)∗(S) respectively. Consider a quasi-potential U of mean 0 of S which
is a DSH current satisfying ddcU = S−ω p

FS. The following computations are valid
for S smooth and can be extended to all currents S using a suitable regularization
procedure.

By Theorem A.35 in the Appendix, the current d−p f ∗(U) is DSH and satisfies

ddc(d−p f ∗(U)
)

= d−p f ∗(S)−d−p f ∗(ω p
FS).

1 These super-potentials correspond to super-potentials of mean 0 in [DS10].
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If V is a smooth quasi-potential of mean 0 of d−p f ∗(ω p
FS), i.e. a smooth real

(p−1, p−1)-form such that

ddcV = d−p f ∗(ω p
FS)−ω p

FS and 〈ωk−p+1
FS ,V 〉 = 0,

then V +d−p f ∗(U) is a quasi-potential of d−p f ∗(S). Let m be the real number such
that V + d−p f ∗(U)+ mω p−1

FS is a quasi-potential of mean 0 of d−1 f ∗(S). We have

U1(R) = 〈V + d−p f ∗(U)+ mω p−1
FS ,R〉

= 〈V,R〉+ d−1〈U,Λ(R)〉+ m

= V (R)+ d−1U (Λ(R))+ m.

By induction, we obtain

Un(R) = V (R)+ d−1V (Λ(R))+ · · ·+ d−n+1V (Λn−1(R))
+d−nU (Λn(R))+ mn,

where mn is a constant depending on n and on S.
Since d−p f ∗(ω p

FS) is smooth, V is a Hölder continuous function. It is not diffi-
cult to show that Λ is Lipschitz with respect to the distance distα on Ck−p+1(Pk).
Therefore, by Lemma 1.19, the sum

V (R)+ d−1V (Λ(R))+ · · ·+ d−n+1V (Λn−1(R))

converges uniformly to a Hölder continuous function V∞ which does not depend
on S. Recall that super-potentials vanish at ωk−p+1

FS , in particular, Un(ωk−p+1
FS ) = 0.

Since U is bounded, the above expression of Un(R) for R = ωk−p+1
FS implies that

mn converge to m∞ := −V∞(ωk−p+1
FS ) which is independent of S. So, Un converge

uniformly to V∞+m∞. We deduce that d−pn( f n)∗(S) converge to a current Tp which
does not depend on S. Moreover, the super-potential of Tp is the Hölder continuous
function V∞+ m∞.

We deduce from the above discussion that d−pn( f n)∗(ω p
FS) converge in the Har-

togs’ sense to Tp. Theorem A.48 implies that Tp+q = Tp∧Tq if p+q≤ k. Therefore,
if T is the Green (1,1)-current, Tp is equal to T p the Green (p, p)-current of f . #
Remark 1.33. Let Sn be positive closed (p, p)-currents of mass 1 on Pk. Assume that
their super-potentials USn satisfy ‖USn‖∞ = o(dn). Then d−pn( f n)∗(Sn) converge
to T p. If ( fs) is a family of maps depending holomorphically on s in a space of
parameters Σ , then the Green super-functions are also locally Hölder continuous
with respect to s and define a positive closed (p, p)-current on Σ ×Pk. Its slice by
{s}×Pk is the Green (p, p)-current of fs.

We now introduce two other constructions of the Green measure. The main point
is the use of appropriate spaces of test functions adapted to complex analysis. Their
norms take into account the complex structure of Pk. The reason to introduce these
spaces is that they are invariant under the push-forward by a holomorphic map. This
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is not the case for spaces of smooth forms because of the critical set. Moreover, we
will see that there is a spectral gap for the action of endomorphisms of Pk which is
a useful property in the stochastic study of the dynamical system. The first method,
called the ddc-method, was introduced in [DS1] and developped in [DS6]. It can be
extended to Green currents of any bidegree. We show a convergence result for PB
measures ν towards the Green measure. PB measures are diffuse in some sense; we
will study equidistribution of Dirac masses in the next paragraph.

Recall that f is an endomorphism of Pk of algebraic degree d ≥ 2. Define the
Perron-Frobenius operator Λ on test functions ϕ by Λ(ϕ) := d−k f∗(ϕ). More
precisely, we have

Λ(ϕ)(z) := d−k ∑
w∈ f−1(z)

ϕ(w),

where the points in f−1(z) are counted with multiplicity. The following proposition
is crucial.

Proposition 1.34. The operatorΛ : DSH(Pk)→ DSH(Pk) is well-defined, bounded
and continuous with respect to the weak topology on DSH(Pk). The operator
Λ̃ : DSH(Pk) → DSH(Pk) defined by

Λ̃ (ϕ) :=Λ(ϕ)−〈ωk
FS,Λ(ϕ)〉

is contracting and satisfies the estimate

‖Λ̃(ϕ)‖DSH ≤ d−1‖ϕ‖DSH.

Proof. We prove the first assertion. Let ϕ be a quasi-p.s.h. function such that
ddcϕ ≥ −ωFS. We show that Λ(ϕ) is d.s.h. Since ϕ is strongly upper semi-
continuous, Λ(ϕ) is strongly upper semi-continuous, see Appendix A.2. If
ddcϕ = S−ωFS with S positive closed, we have ddcΛ(ϕ) = d−k f∗(S)−d−k f∗(ωFS).
Therefore, if u is a quasi-potential of d−k f∗(ωFS), then u +Λ(ϕ) is strongly semi-
continuous and is a quasi-potential of d−k f∗(S). So, this function is quasi-p.s.h. We
deduce that Λ(ϕ) is d.s.h., and hence Λ : DSH(Pk) → DSH(Pk) is well-defined.

Observe that Λ : L1(Pk) → L1(Pk) is continuous. Indeed, if ϕ is in L1(Pk), we
have

‖Λ(ϕ)‖L1 = 〈ωk
FS,d−k| f∗(ϕ)|〉 ≤ 〈ωk

FS,d
−k f∗(|ϕ |)〉 = d−k〈 f ∗(ωk

FS), |ϕ |〉 " ‖ϕ‖L1 .

Therefore, Λ : DSH(Pk) → DSH(Pk) is continuous with respect to the weak topol-
ogy. This and the estimates below imply that Λ is a bounded operator.

We prove now the last estimate in the proposition. Write ddcϕ = S+ − S− with
S± positive closed. We have

ddcΛ̃ (ϕ) = ddcΛ(ϕ) = d−k f∗(S+−S−) = d−k f∗(S+)−d−k f∗(S−).

Since ‖ f∗(S±)‖ = dk−1‖S±‖ and 〈ωk
FS,Λ̃(ϕ)〉 = 0, we obtain that ‖Λ̃(ϕ)‖DSH ≤

d−1‖S±‖. The result follows. +,
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Recall that if ν is a positive measure on Pk, the pull-back f ∗(ν) is defined by
the formula 〈 f ∗(ν),ϕ〉 = 〈ν, f∗(ϕ)〉 for ϕ continuous on Pk. Observe that since
f is a ramified covering, f∗(ϕ) is continuous when ϕ is continuous, see Exercise
A.11 in Appendix. So, the above definition makes sense. For ϕ = 1, we obtain that
‖ f ∗(ν)‖ = dk‖ν‖, since the covering is of degree dk. If ν is the Dirac mass at a
point a, f ∗(ν) is the sum of Dirac masses at the points in f−1(a).

Recall that a measure ν is PB if quasi-p.s.h. are ν-integrable and ν is PC if it
is PB and acts continuously on DSH(Pk) with respect to the weak topology on this
space, see Appendix A.4. We deduce from Proposition 1.34 the following result
where the norm ‖ · ‖µ on DSH(Pk) is defined by

‖ϕ‖µ := |〈µ ,ϕ〉|+ inf‖S±‖,

with S± positive closed such that ddcϕ = S+−S−. We will see that µ is PB, hence
this norm is equivalent to ‖ · ‖DSH, see Proposition A.43.

Theorem 1.35. Let f be as above. If ν is a PB probability measure, then
d−kn( f n)∗(ν) converge to a PC probability measure µ which is independent of
ν and totally invariant under f . Moreover, if ϕ is a d.s.h. function and cϕ := 〈µ ,ϕ〉,
then

‖Λn(ϕ)− cϕ‖µ ≤ d−n‖ϕ‖µ and ‖Λn(ϕ)− cϕ‖DSH ≤ Ad−n‖ϕ‖DSH,

where A > 0 is a constant independent of ϕ and n. In particular, there is a constant
c > 0 depending on ν such that

|〈d−kn( f n)∗(ν)− µ ,ϕ〉| ≤ cd−n‖ϕ‖DSH.

Proof. Since ν is PB, d.s.h. functions are ν integrable. It follows that there is a
constant c > 0 such that |〈ν,ϕ〉| ≤ c‖ϕ‖DSH. Otherwise, there are d.s.h. functions
ϕn with ‖ϕn‖DSH ≤ 1 and 〈ν,ϕn〉 ≥ 2n, hence the d.s.h. function ∑2−nϕn is not
ν-integrable.

It follows from Proposition 1.34 that f ∗(ν) is PB. So, d−kn( f n)∗(ν) is PB for
every n. Define for ϕ d.s.h.,

c0 := 〈ωk
FS,ϕ〉 and ϕ0 := ϕ− c0

and inductively

cn+1 := 〈ωk
FS,Λ(ϕn)〉 and ϕn+1 :=Λ(ϕn)− cn+1 = Λ̃(ϕn).

A straighforward computation gives

Λn(ϕ) = c0 + · · ·+ cn +ϕn.

Therefore,

〈d−kn( f n)∗(ν),ϕ〉 = 〈ν,Λn(ϕ)〉 = c0 + · · ·+ cn + 〈ν,ϕn〉.
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Proposition 1.34 applied inductively on n implies that ‖ϕn‖DSH ≤ d−n‖ϕ‖DSH.
Since Λ is bounded, it follows that |cn| ≤ Ad−n‖ϕ‖DSH, where A > 0 is a constant.
The property that ν is PB and the above estimate on ϕn imply that 〈ν,ϕn〉 converge
to 0.

We deduce that 〈d−kn( f n)∗(ν),ϕ〉 converge to cϕ :=∑n≥0 cn and |cϕ |" ‖ϕ‖DSH.
Therefore, d−kn( f n)∗(ν) converge to a PB measure µ defined by 〈µ ,ϕ〉 := cϕ . The
constant cϕ does not depend on ν , hence the measure µ is independent of ν . The
above convergence implies that µ is totally invariant, i.e. f ∗(µ) = dkµ . Finally,
since cn depends continuously on the d.s.h. function ϕ , the constant cϕ , which is
defined by a normally convergent series, depends also continuously on ϕ . It follows
that µ is PC.

We prove now the estimates in the theorem. The total invariance of µ implies
that 〈µ ,Λn(ϕ)〉= 〈µ ,ϕ〉= cϕ . If ddcϕ = S+−S− with S± positive closed, we have
ddcΛn(ϕ) = d−kn( f n)∗(S+)−d−kn( f n)∗(S−), hence

‖Λn(ϕ)− cϕ‖µ ≤ d−kn‖( f n)∗(S±)‖ = d−n‖S±‖.

It follows that
‖Λn(ϕ)− cϕ‖µ ≤ d−n‖ϕ‖µ .

For the second estimate, we have

‖Λn(ϕ)− cϕ‖DSH = ‖ϕn‖DSH +∑
i≥n

ci.

The last sum is clearly bounded by a constant times d−n‖ϕ‖DSH. This together with
the inequality ‖ϕn‖DSH " d−n‖ϕ‖DSH implies ‖Λn(ϕ)− cϕ‖DSH " d−n‖ϕ‖DSH.
We can also use that ‖ ‖µ and ‖ ‖DSH are equivalent, see Proposition A.43.

The last inequality in the theorem is then deduced from the identity

〈d−kn( f n)∗(ν)− µ ,ϕ〉 = 〈ν,Λn(ϕ)− cϕ〉

and the fact that ν is PB. +,

Remark 1.36. In the present case, the ddc-method is quite simple. The function ϕn
is the normalized solution of the equation ddcψ = ddcΛn(ϕ). It satisfies automat-
ically good estimates. The other solutions differ from ϕn by constants. We will see
that for polynomial-like maps, the solutions differ by pluriharmonic functions and
the estimates are less straightforward. In the construction of Green (p, p)-currents
with p > 1, ϕ is replaced with a test form of bidegree (k − p,k − p) and ϕn is a
solution of an appropriate ddc-equation. The constants cn will be replaced with
ddc-closed currents with a control of their cohomology class.

The second construction of the Green measure follows the same lines but we use
the complex Sobolev space W ∗(Pk) instead of DSH(Pk). We obtain that the Green
measure µ is WPB, see Appendix A.4 for the terminology. We only mention here
the result which replaces Proposition 1.34.



Dynamics in Several Complex variables 187

Proposition 1.37. The operator Λ : W ∗(Pk) → W ∗(Pk) is well-defined, bounded
and continuous with respect to the weak topology on W ∗(Pk). The operator
Λ̃ : W ∗(Pk) →W ∗(Pk) defined by

Λ̃ (ϕ) :=Λ(ϕ)−〈ωk
FS,Λ(ϕ)〉

is contracting and satisfies the estimate

‖Λ̃(ϕ)‖W ∗ ≤ d−1/2‖ϕ‖W∗ .

Sketch of proof. As in Proposition 1.34, since ϕ is in L1(Pk),Λ(ϕ) is also in L1(Pk)
and the main point here is to estimate ∂ϕ . Let S be a positive closed (1,1)-current
on Pk such that

√
−1∂ϕ ∧∂ϕ ≤ S. We show that

√
−1∂ f∗(ϕ)∧∂ f∗(ϕ) ≤ dk f∗(S),

in particular, the Poincaré differential dΛ(ϕ) of Λ(ϕ) is in L2(Pk).
If a is not a critical value of f and U a small neighbourhood of a, then f−1(U) is

the union of dk open sets Ui which are sent bi-holomorphically on U . Let gi : U →Ui
be the inverse branches of f . On U , we obtain using Schwarz’s inequality that

√
−1∂ f∗(ϕ)∧∂ f∗(ϕ) =

√
−1

(
∑∂g∗i (ϕ)

)
∧
(
∑∂g∗i (ϕ)

)

≤ dk∑
√
−1∂g∗i (ϕ)∧∂g∗i (ϕ)

= dk f∗
(√

−1∂ϕ ∧∂ϕ
)
.

Therefore, we have
√
−1∂ f∗(ϕ)∧∂ f∗(ϕ) ≤ dk f∗(S) out of the critical values of f

which is a manifold of real codimension 2.
Recall that f∗(ϕ) is in L1(Pk). It is a classical result in Sobolev spaces theory

that an L1 function whose gradient out of a submanifold of codimension 2 is
in L2, is in fact in the Sobolev space W 1,2(Pk). We deduce that the inequality√
−1∂ f∗(ϕ)∧∂ f∗(ϕ) ≤ dk f∗(S) holds on Pk, because the left hand side term is an

L1 form and has no mass on critical values of f . Finally, we have
√
−1∂Λ(ϕ)∧∂Λ(ϕ) ≤ d−k f∗(S).

This, together with the identity ‖ f∗(S)‖ = dk−1‖S‖, implies that ‖Λ̃(ϕ)‖W∗ ≤
d−1/2‖S‖. The proposition follows. #

In the rest of this paragraph, we show that the Green measure µ is moderate,
see Appendix A.4. Recall that a positive measure ν on Pk is moderate if there are
constants α > 0 and c > 0 such that

‖e−αϕ‖L1(ν) ≤ c

for ϕ quasi-p.s.h. such that ddcϕ ≥−ωFS and 〈ωk
FS,ϕ〉= 0. Moderate measures are

PB and by linearity, if ν is moderate and D is a bounded set of d.s.h. functions then
there are constants α > 0 and c > 0 such that

‖eα |ϕ|‖L1(ν) ≤ c for ϕ ∈ D .
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Moderate measures were introduced in [DS1]. The fundamental estimate in
Theorem A.22 in Appendix implies that smooth measures are moderate. So, when
we use test d.s.h. functions, several estimates for the Lebesgue measure can be
extended to moderate measures. For example, we will see that quasi-p.s.h. functions
have comparable repartition functions with respect to the Lebesgue measure ωk

FS
and to the equilibrium measure µ .

It is shown in [DNS] that measures which are wedge-products of positive closed
(1,1)-currents with Hölder continuous potentials, are moderate. In particular, the
Green measure µ is moderate. We will give here another proof of this result us-
ing the following criterion. Since DSH(Pk) is a subspace of L1(Pk), the L1-norm
induces a distance on DSH(Pk) that we denote by distL1 .

Proposition 1.38. Let ν be a PB positive measure on Pk. Assume that ν restricted
to any bounded subset of DSH(Pk) is Hölder continuous2 with respect to distL1 .
Then ν is moderate.

Proof. Let ϕ be a quasi-p.s.h. function such that ddcϕ ≥ −ωFS and 〈ωk
FS,ϕ〉 = 0.

We want to prove that 〈ν,e−αϕ〉 ≤ c for some positive constants α,c. For this pur-
pose, we only have to show that ν{ϕ ≤−M} " e−αM for some constant α > 0 and
for M ≥ 1. Define for M > 0, ϕM := max(ϕ ,−M). These functions ϕM belong to a
compact family D of d.s.h. functions. Observe that ϕM−1 −ϕM is positive with sup-
port in {ϕ ≤−M +1}. It is bounded by 1 and equal to 1 on {ϕ < −M}. Therefore,
the Hölder continuity of ν on D implies that there is a constant λ > 0 such that

ν{ϕ < −M} ≤ 〈ν,ϕM−1 −ϕM〉 = ν(ϕM−1)−ν(ϕM)

" distL1(ϕM−1,ϕM)λ ≤ volume{ϕ < −M + 1}λ .

Since the Lebesgue measure is moderate, the last expression is " e−αM for some
positive constant α . The proposition follows. +,

We have the following result obtained in [DNS]. It will be used to establish
several stochastic properties of d.s.h. observables for the equilibrium measure.

Theorem 1.39. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Then,
the Green measure µ of f is Hölder continuous on bounded subsets of DSH(Pk). In
particular, it is moderate.

Proof. Let D be a bounded set of d.s.h. functions. We have to show that µ is Hölder
continuous on D with respect to distL1 . By linearity, since µ is PC, it is enough
to consider the case where D is the set of d.s.h. functions ϕ such that 〈µ ,ϕ〉 ≥ 0
and ‖ϕ‖µ ≤ 1. Let D̃ denote the set of d.s.h. functions ϕ −Λ(ϕ) with ϕ ∈ D . By
Proposition 1.34, D̃ is a bounded family of d.s.h. functions. We claim that D̃ is
invariant under Λ̃ := dΛ . Observe that if ϕ is in D , then ϕ̃ := ϕ−〈µ ,ϕ〉 is also in
D . Since 〈µ ,ϕ〉 = 〈µ ,Λ(ϕ)〉, we have ‖Λ̃(ϕ̃)‖µ ≤ 1 and

Λ̃(ϕ−Λ(ϕ)) = Λ̃ (ϕ̃−Λ(ϕ̃)) = Λ̃(ϕ̃)−Λ(Λ̃(ϕ̃)).

2 This property is close to the property that ν has a Hölder continuous super-potential.
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By Theorem 1.35, Λ̃(ϕ̃) belongs to D . This proves the claim. So, the crucial point
is that Λ is contracting on an appropriate hyperplane.

For ϕ ,ψ in L1(Pk) we have

‖Λ̃(ϕ)− Λ̃(ψ)‖L1 ≤
∫
Λ̃(|ϕ−ψ |)ωk

FS = d1−k
∫
|ϕ−ψ | f ∗(ωk

FS) " ‖ϕ−ψ‖L1 .

So, the map Λ̃ is Lipschitz with respect to distL1 . In particular, the map
ϕ .→ ϕ−Λ(ϕ) is Lipschitz with respect to this distance. Now, we have for ϕ ∈ D

〈µ ,ϕ〉 = lim
n→∞

〈d−kn( f n)∗(ωk
FS),ϕ〉 = lim

n→∞
〈ωk

FS,Λn(ϕ)〉

= 〈ωk
FS,ϕ〉−∑

n≥0
〈ωk

FS,Λn(ϕ)−Λn+1(ϕ)〉

= 〈ωk
FS,ϕ〉−∑

n≥0
d−n〈ωk

FS,Λ̃n(ϕ−Λ(ϕ))〉.

By Lemma 1.19, the last series defines a function on D̃ which is Hölder continuous
with respect to distL1 . Therefore, ϕ .→ 〈µ ,ϕ〉 is Hölder continuous on D . +,

Remark 1.40. Let fs be a family of endomorphisms of algebraic degree d ≥ 2,
depending holomorphically on a parameter s ∈ Σ . Let µs denote its equilibrium
measure. We get that (s,ϕ) .→ µs(ϕ) is Hölder continuous on bounded subsets of
Σ ×DSH(Pk).

The following results are useful in the stochastic study of the dynamical system.

Corollary 1.41. Let f , µ and Λ be as above. There are constants c > 0 and α > 0
such that if ψ is d.s.h. with ‖ψ‖DSH ≤ 1, then

〈
µ ,eαdn|Λn(ψ)−〈µ,ψ〉|〉≤ c and ‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ cqd−n

for every n ≥ 0 and every 1 ≤ q < +∞.

Proof. By Theorem 1.35, dn(Λn(ψ) − 〈µ ,ψ〉) belong to a compact family in
DSH(Pk). The first inequality in the corollary follows from Theorem 1.39. For the
second one, we can assume that q is integer and we easily deduce the result from
the first inequality and the inequalities xq ≤ q!ex ≤ qqex for x ≥ 0. +,

Corollary 1.42. Let 0 < ν ≤ 2 be a constant. There are constants c > 0 and α > 0
such that if ψ is a ν-Hölder continuous function with ‖ψ‖C ν ≤ 1, then

〈
µ ,eαdnν/2|Λn(ψ)−〈µ,ψ〉|〉≤ c and ‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ cqν/2d−nν/2

for every n ≥ 0 and every 1 ≤ q < +∞.

Proof. By Corollary 1.41, since ‖ · ‖DSH " ‖ · ‖C 2, we have

‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ cqd−n‖ψ‖C 2 ,
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with c > 0 independent of q and ofψ . On the other hand, by definition ofΛ , we have

‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ ‖Λn(ψ)−〈µ ,ψ〉‖L∞(µ) ≤ 2‖ψ‖C 0 .

The theory of interpolation between the Banach spaces C 0 and C 2 [T1], applied to
the linear operator ψ .→Λn(ψ)−〈µ ,ψ〉, implies that

‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ Aν21−ν/2[cqd−n]ν/2‖ψ‖C ν ,

for some constant Aν > 0 depending only on ν and on Pk. This gives the second
inequality in the corollary.

Recall that if L is a linear continuous functional on the space C 0 of continuous
functions, then we have for every 0 < ν < 2

‖L‖C ν ≤ Aν‖L‖1−ν/2
C 0 ‖L‖ν/2

C 2

for some constant Aν > 0 independent of L (in our case, the functional is with values
in Lq(µ)).

For the first inequality, we have for a fixed constant α > 0 small enough,

〈
µ ,eαdnν/2|Λn(ψ)−〈µ,ψ〉|〉= ∑

q≥0

1
q!

〈
µ , |αdnν/2(Λn(ψ)−〈µ ,ψ〉)|q

〉
≤ ∑

q≥0

1
q!
αqcqqq.

By Stirling’s formula, the last sum converges. The result follows. +,

Exercise 1.43. Let ϕ be a smooth function and ϕn as in Theorem 1.35. Show that
we can write ϕn = ϕ+

n −ϕ−
n with ϕ±

n quasi-p.s.h. such that ‖ϕ±
n ‖DSH " d−n and

ddcϕ±
n $ −d−nωFS. Prove that ϕn converge pointwise to 0 out of a pluripolar set.

Deduce that if ν is a probability measure with no mass on pluripolar sets, then
d−kn( f n)∗(ν) converge to µ .

Exercise 1.44. Let DSH0(Pk) be the space of d.s.h. functionsϕ such that 〈µ ,ϕ〉= 0.
Show that DSH0(Pk) is a closed subspace of DSH(Pk), invariant under Λ , and that
the spectral radius of Λ on this space is equal to 1/d. Note that 1 is an eigenvalue
of Λ on DSH(Pk), so, Λ has a spectral gap on DSH(Pk). Prove a similar result for
W ∗(Pk).

1.4 Equidistribution of Points

In this paragraph, we show that the preimages of a generic point by f n are equidis-
tributed with respect to the Green measure µ when n goes to infinity. The proof
splits in two parts. First, we prove that there is a maximal proper algebraic set E
which is totally invariant, then we show that for a "∈ E , the preimages of a are
equidistributed. We will also prove that the convex set of probability measures ν ,
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which are totally invariant, i.e. f ∗(ν) = dkν , is finite dimensional. The equidistri-
bution for a out of an algebraic set is reminiscent of the main questions in value
distribution theory (we will see in the next paragraph that using super-potentials
we can get an estimate on the speed of convergence towards µ , at least for generic
maps). Finally, we prove a theorem due to Briend-Duval on the equidistribution of
the repelling periodic points. The following result was obtained by the authors in
[DS1], see also [DS9] and [BH, FL, LY] for the case of dimension 1.

Theorem 1.45. Let f be an endomorphism of Pk of algebraic degree d ≥ 2 and µ its
Green measure. Then there is a proper algebraic set E of Pk, possibly empty, such
that d−kn( f n)∗(δa) converge to µ if and only if a "∈ E . Here, δa denotes the Dirac
mass at a. Moreover, E is totally invariant: f−1(E ) = f (E ) = E and is maximal in
the sense that if E is a proper algebraic set of Pk such that f−n(E) ⊂ E for some
n ≥ 1, then E is contained in E .

Briend-Duval proved in [BD2] the above convergence for a outside the orbit of
the critical set. They announced the property for a out of an algebraic set, but there
is a problem with the counting of multiplicity in their lemma in [BD2, p.149].

We also have the following earlier result due to Fornæss-Sibony [FS1].

Proposition 1.46. There is a pluripolar set E ′ such that if a is out of E ′, then
d−kn( f n)∗(δa) converge to µ .

Sketch of proof. We use here a version of the above ddc-method which is given in
[DS6] in a more general setting. Let ϕ be a smooth function and ϕn as in Theorem
1.35. Then, the functions ϕn are continuous. The estimates on ϕn imply that the
series ∑ϕn converges in DSH(Pk), hence converges pointwise out of a pluripolar
set. Therefore, ϕn(a) converge to 0 for a out of some pluripolar set Eϕ , see Exercise
1.43. If cn := 〈ωk

FS,Λ(ϕn)〉, we have as in Theorem 1.35

〈d−kn( f n)∗(δa),ϕ〉 = c0 + · · ·+ cn + 〈δa,ϕn〉 = c0 + · · ·+ cn +ϕn(a).

Therefore, 〈d−kn( f n)∗(δa),ϕ〉 converge to cϕ = 〈µ ,ϕ〉, for a out of Eϕ .
Now, consider ϕ in a countable family F which is dense in the space of smooth

functions. If a is not in the union E ′ of the pluripolar sets Eϕ , the above convergence
of 〈d−kn( f n)∗(δa),ϕ〉 together with the density of F implies that d−kn( f n)∗(δa)
converge to µ . Finally, E ′ is pluripolar since it is a countable union of such sets. #

For the rest of the proof, we follow a geometric method introduced by Lyubich
[LY] in dimension one and developped in higher dimension by Briend-Duval and
Dinh-Sibony. We first prove the existence of the exceptional set and give several
characterizations in the following general situation. Let X be an analytic set of
pure dimension p in Pk invariant under f , i.e. f (X) = X . Let g : X → X denote
the restriction of f to X . The following result can be deduced from Section 3.4 in
[DS1], see also [D5, DS9].

Theorem 1.47. There is a proper analytic set EX of X, possibly empty, totally invari-
ant under g, which is maximal in the following sense. If E is an analytic set of X, of
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dimension < dimX, such that g−s(E) ⊂ E for some s ≥ 1, then E ⊂ EX . Moreover,
there are at most finitely many analytic sets in X which are totally invariant under g.

Since g permutes the irreducible components of X , we can find an integer m ≥ 1
such that gm fixes the components of X .

Lemma 1.48. The topological degree of gm is equal to dmp. More precisely, there is
a hypersurface Y of X containing sing(X)∪gm(sing(X)) such that for x ∈ X out of
Y , the fiber g−m(x) has exactly dmp points.

Proof. Since gm fixes the components of X , we can assume that X is irreducible. It
follows that gm defines a covering over some Zariski dense open set of X . We want
to prove that δ , the degree of this covering, is equal to dmp. Consider the positive
measure ( f m)∗(ω p

FS) ∧ [X ]. Since ( f m)∗(ω p
FS) is cohomologous to dmpω p

FS, this
measure is of mass dmp deg(X). Observe that ( f m)∗ preserves the mass of positive
measures and that we have ( f m)∗[X ] = δ [X ]. Hence,

dmp deg(X) = ‖( f m)∗(ω p
FS)∧ [X ]‖ = ‖( f m)∗(( f m)∗(ω p

FS)∧ [X ])‖
= ‖ω p

FS ∧ ( f m)∗[X ]‖ = δ‖ω p
FS ∧ [X ]‖ = δ deg(X).

It follows that δ = dmp. So, we can take for Y , a hypersurface which contains the
ramification values of gm and the set sing(X)∪gm(sing(X)). +,

Let Y be as above. Observe that if gm(x) "∈ Y then gm defines a bi-holomorphic
map between a neighbourhood of x and a neighbourhood of gm(x) in X . Let [Y ]
denote the (k− p + 1,k− p + 1)-current of integration on Y in Pk. Since ( f mn)∗[Y ]
is a positive closed (k− p + 1,k− p + 1)-current of mass dmn(p−1) deg(Y ), we can
define the following ramification current

R = ∑
n≥0

Rn := ∑
n≥0

d−mnp( f mn)∗[Y ].

Let ν(R,x) denote the Lelong number of R at x. By Theorem A.14, for c > 0,
Ec := {ν(R,x)≥ c} is an analytic set of dimension ≤ p−1 contained in X . Observe
that E1 contains Y . We will see that R measures the obstruction for constructing
good backwards orbits.

For any point x ∈ X let λ ′
n(x) denote the number of distinct orbits

x−n,x−n+1, . . . ,x−1,x0

such that gm(x−i−1) = x−i, x0 = x and x−i ∈ X \Y for 0 ≤ i ≤ n− 1. These are the
“good” orbits. Define λn := d−mpnλ ′

n. The function λn is lower semi-continuous with
respect to the Zariski topology on X . Moreover, by Lemma 1.48, we have 0≤ λn ≤ 1
and λn = 1 out of the analytic set ∪n−1

i=0 gmi(Y ). The sequence (λn) decreases to a
function λ , which represents the asymptotic proportion of backwards orbits in X \Y .

Lemma 1.49. There is a constant γ > 0 such that λ ≥ γ on X \E1.
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Proof. We deduce from Theorem A.14, the existence of a constant 0 < γ < 1
satisfying {ν(R,x) > 1− γ} = E1. Indeed, the sequence of analytic sets {ν(R,x) ≥
1−1/i} is decreasing, hence stationary. Consider a point x ∈ X \E1. We have x "∈Y
and if νn := ν(Rn,x), then ∑νn ≤ 1− γ . Since E1 contains Y , ν0 = 0 and F1 :=
g−m(x) contains exactly dmp points. The definition of ν1, which is “the multiplicity”
of d−mp( f m)∗[Y ] at x, implies that g−m(x) contains at most ν1dmp points in Y . Then

#g−m(F1 \Y ) = dmp#(F1 \Y) ≥ (1−ν1)d2mp.

Define F2 := g−m(F1 \Y ). The definition of ν2 implies that F2 contains at most
ν2d2mp points in Y . Hence, F3 := g−m(F2 \Y ) contains at least (1− ν1 − ν2)d3mp

points. In the same way, we define F4, . . ., Fn with #Fn ≥ (1−∑νi)dmpn. Hence, for
every n we get the following estimate:

λn(x) ≥ d−mpn#Fn ≥ 1−∑νi ≥ γ.

This proves the lemma. +,

End of the proof of Theorem 1.47. Let E n
X denote the set of x ∈ X such that

g−ml(x) ⊂ E1 for 0 ≤ l ≤ n and define EX := ∩n≥0E n
X . Then, (E n

X ) is a decreasing
sequence of analytic subsets of E1. It should be stationary. So, there is n0 ≥ 0 such
that E n

X = EX for n ≥ n0.
By definition, EX is the set of x ∈ X such that g−mn(x) ⊂ E1 for every n ≥ 0.

Hence, g−m(EX ) ⊂ EX . It follows that the sequence of analytic sets g−mn(EX) is
decreasing and there is n ≥ 0 such that g−m(n+1)(EX ) = g−mn(EX). Since gmn is
surjective, we deduce that g−m(EX ) = EX and hence EX = gm(EX).

Assume as in the theorem that E is analytic with g−s(E) ⊂ E . Define E ′ :=
g−s+1(E)∪ . . .∪E . We have g−1(E ′) ⊂ E ′ which implies g−n−1(E ′) ⊂ g−n(E ′) for
every n≥ 0. Hence, g−n−1(E ′) = g−n(E ′) for n large enough. This and the surjectiv-
ity of g imply that g−1(E ′) = g(E ′) = E ′. By Lemma 1.48, the topological degree of
(gm′)|E ′ is at most dm′(p−1) for some m′ ≥ 1. This, the identity g−1(E ′) = g(E ′) = E ′

together with Lemma 1.49 imply that E ′ ⊂ E1. Hence, E ′ ⊂ EX and E ⊂ EX .
Define E ′

X := g−m+1(EX)∪ . . .∪ EX . We have g−1(E ′
X ) = g(E ′

X) = E ′
X . Apply-

ing the previous assertion to E := E ′
X yields E ′

X ⊂ EX . Therefore, E ′
X = EX and

g−1(EX) = g(EX) = EX . So, EX is the maximal proper analytic set in X which is
totally invariant under g.

We prove now that there are only finitely many totally invariant algebraic sets.
We only have to consider totally invariant sets E of pure dimension q. The proof
is by induction on the dimension p of X . The case p = 0 is clear. Assume that the
assertion is true for X of dimension ≤ p−1 and consider the case of dimension p.
If q = p then E is a union of components of X . There are only a finite number of
such analytic sets. If q < p, we have seen that E is contained in EX . Applying the
induction hypothesis to the restriction of f to EX gives the result. #

We now give another characterization of EX . Observe that if X is not locally irre-
ducible at a point x then g−m(x) may contain more than dmp points. Let π : X̃ → X
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be the normalization of X , see Appendix A.1. By Theorem A.4 applied to g ◦π , g
can be lifted to a map g̃ : X̃ → X̃ such that g ◦π = π ◦ g̃. Since g is finite, g̃ is also
finite. We deduce that g̃m defines ramified coverings of degree dmp on each compo-
nent of X̃ . In particular, any fiber of g̃m contains at most dmp points. Observe that if
g−1(E) ⊂ E then g̃−1(Ẽ) ⊂ Ẽ where Ẽ := π−1(E). Theorem 1.47 can be extended
to g̃. For simplicity, we consider the case where X is itself a normal analytic space.
If X is not normal, one should work with its normalization.

Let Z be a hypersurface of X containing E1. Let Nn(a) denote the number of
orbits of gm

a−n, . . . ,a−1,a0

with gm(a−i−1) = a−i and a0 = a such that a−i ∈ Z for every i. Here, the orbits are
counted with multiplicity. So, Nn(a) is the number of negative orbits of order n of
a which stay in Z. Observe that the sequence of functions τn := d−pmnNn decreases
to some function τ . Since τn are upper semi-continuous with respect to the Zariski
topology and 0 ≤ τn ≤ 1 (we use here the assumption that X is normal), the function
τ satisfies the same properties. Note that τ(a) is the probability that an infinite
negative orbit of a stays in Z.

Proposition 1.50. Assume that X is normal. Then, τ is the characteristic function
of EX , that is, τ = 1 on EX and τ = 0 on X \EX .

Proof. Since EX ⊂ Z and EX is totally invariant by g, we have EX ⊂ {τ = 1}. Let
θ ≥ 0 denote the maximal value of τ on X \EX . This value exists since τ is upper
semi-continuous with respect to the Zariski topology (indeed, it is enough to con-
sider the algebraic subsets {τ ≥ θ ′} of X which decrease when θ ′ increases; the
family is stationary). We have to check that θ = 0. Assume in order to obtain a con-
tradiction that θ > 0. Since τ ≤ 1, we always have θ ≤ 1. Consider the non-empty
analytic set E := τ−1(θ ) \ EX in Z \ EX . Let a be a point in E . Since EX is totally
invariant, we have g−m(a)∩ EX = ∅. Hence, τ(b) ≤ θ for every b ∈ g−m(a). We
deduce from the definition of τ and θ that

θ = τ(a) ≤ d−pm ∑
b∈g−m(a)

τ(b) ≤ θ .

It follows that g−m(a) ⊂ E . Therefore, the analytic subset E of Z satisfies
g−m(E) ⊂ E . This contradicts the maximality of EX . +,

We continue the proof of Theorem 1.45. We will use the above results for X = Pk,
Y the set of critical values of f . Let R be the ramification current defined as above by

R = ∑
n≥0

Rn := ∑
n≥0

d−kn( f n)∗[Y ].

The following proposition was obtained in [DS1], a weaker version was indepen-
dently obtained by Briend-Duval [BD3]. Here, an inverse branch on B for f n is a
bi-holomorphic map gi : B →Ui such that gi ◦ f n is identity on Ui.
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Proposition 1.51. Let ν be a strictly positive constant. Let a be a point in Pk such
that the Lelong number ν(R,a) of R at a is strictly smaller than ν . Then, there is
a ball B centered at a such that f n admits at least (1−

√
ν)dkn inverse branches

gi : B → Ui where Ui are open sets in Pk of diameter ≤ d−n/2. In particular, if µ ′ is
a limit value of the measures d−kn( f n)∗(δa) then ‖µ ′ − µ‖ ≤ 2

√
ν(R,a).

Given a local coordinate system at a, let F denote the family of complex lines
passing through a. For such a line ∆ denote by ∆r the disc of center a and of
radius r. The family F is parametrized by Pk−1 where the probability measure (the
volume form) associated to the Fubini-Study metric is denoted by L . Let Br denote
the ball of center a and of radius r.

Lemma 1.52. Let S be a positive closed (1,1)-current on a neighbourhood of
a. Then for any δ > 0 there is an r > 0 and a family F ′ ⊂ F , such that
L (F ′) ≥ 1 − δ and for every ∆ in F ′, the measure S ∧ [∆r] is well-defined
and of mass ≤ ν(S,a)+ δ , where ν(S,a) is the Lelong number of S at a.

Proof. Let π : P̂k → Pk be the blow-up of Pk at a and E the exceptional hypersur-
face. Then, we can write π∗(S) = ν(S,a)[E]+ S′ with S′ a current having no mass
on E , see Exercise A.39. It is clear that for almost every ∆r, the restriction of the
potentials of S to ∆r is not identically −∞, so, the measure S∧ [∆r] is well-defined.
Let ∆̂r denote the strict transform of ∆r by π , i.e. the closure of π−1(∆r \ {a}).
Then, the ∆̂r define a smooth holomorphic fibration over E . The measure S∧ [∆r] is
equal to the push-forward of π∗(S)∧ [∆̂r] by π . Observe that π∗(S)∧ [∆̂r] is equal
to S′ ∧ [∆̂r] plus ν(S,a) times the Dirac mass at ∆̂r ∩E . Therefore, we only have to
consider the ∆r such that S′ ∧ [∆̂r] are of mass ≤ δ .

Since S′ have no mass on E , its mass on π−1(Br) tends to 0 when r tends to 0.
It follows from Fubini’s theorem that when r is small enough the mass of the slices
S′ ∧ [∆̂r] is ≤ δ except for a small family of ∆ . This proves the lemma. +,

Lemma 1.53. Let U be a neighbourhood of Br. Let S be a positive closed (1,1)-
current on U. Then, for every δ > 0, there is a family F ′ ⊂F with L (F ′) > 1−δ ,
such that for ∆ in F ′, the measure S∧ [∆r] is well-defined and of mass ≤ A‖S‖,
where A > 0 is a constant depending on δ but independent of S.

Proof. We can assume that ‖S‖ = 1. Let π be as in Lemma 1.52. Then, by conti-
nuity of π∗, the mass of π∗(S) on π−1(Br) is bounded by a constant. It is enough to
apply Fubini’s theorem in order to estimate the mass of π∗(S)∧ [∆̂r]. +,

Recall the following theorem due to Sibony-Wong [SW].

Theorem 1.54. Let m > 0 be a positive constant. Let F ′ ⊂ F be such that
L (F ′) ≥ m and let Σ denote the intersection of the family F ′ with Br. Then
any holomorphic function h on a neighbourhood of Σ can be extended to a holo-
morphic function on Bλ r where λ > 0 is a constant depending on m but independent
of F ′ and r. Moreover, we have

sup
Bλr

|h| ≤ sup
Σ

|h|.
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We will use the following version of a lemma due to Briend-Duval [BD2]. Their
proof uses the theory of moduli of annuli.

Lemma 1.55. Let g : ∆r → Pk be a holomorphic map from a disc of center 0 and
of radius r in C. Assume that area(g(∆r)) counted with multiplicity, is smaller than
1/2. Then for any ε > 0 there is a constant λ > 0 independent of g,r such that the
diameter of g(∆λ r) is smaller than ε

√
area(g(∆r)).

Proof. Observe that the lemma is an easy consequence of the Cauchy formula if
g has values in a compact set of Ck ⊂ Pk. In order to reduce the problem to this
case, it is enough to prove that given an ε0 > 0, there is a constant λ0 > 0 such
that diam(g(∆λ0r)) ≤ ε0. For ε0 small enough, we can apply the above case to g
restricted to ∆λ0r.

By hypothesis, the graphsΓg of g in ∆r ×Pk have bounded area. So, according to
Bishop’s theorem [BS], these graphs form a relatively compact family of analytic
sets, that is, the limits of these graphs in the Hausdorff sense, are analytic sets.
Since area(g(∆r)) is bounded by 1/2, the limits have no compact components.
So, they are also graphs and the family of the maps g is compact. We deduce that
diam(g(∆λ0r)) ≤ ε0 for λ0 small enough. +,

Sketch of the proof of Proposition 1.51. The last assertion in the proposition is
deduced from the first one and Proposition 1.46 applied to a generic point in B. We
obtain that ‖µ ′ − µ‖ ≤ 2

√
ν for every ν strictly larger than ν(R,a) which implies

the result.
For the first assertion, the idea is to construct inverse branches for many discs

passing through a and then to apply Theorem 1.54 in order to construct inverse
branches on balls. We can assume that ν is smaller than 1. Choose constants δ > 0,
ε > 0 small enough and then a constant κ > 0 large enough; all independent of n.
Fix now the integer n. Recall that ‖( f n)∗(ωFS)‖ = d(k−1)n. By Lemmas 1.52 and
1.53, there is a family F ′ ⊂ F and a constant r > 0 such that L (F ′) > 1− δ
and for any ∆ in F ′, the mass of R ∧ [∆κ2r] is smaller than ν and the mass of
( f n)∗(ωFS)∧ [∆κr] is smaller than Ad(k−1)n with A > 0.

Claim. For each ∆ in F ′, f n admits at least (1 − 2ν)dkn inverse branches
gi : ∆κ2r → Vi with area(Vi) ≤ Aν−1d−n. The inverse branches gi can be extended
to a neighbourhood of ∆κ2r.

Assuming the claim, we complete the proof of the proposition. Let a1, . . . ,al be
the points in f−n(a), with l ≤ dkn, and F ′

s ⊂ F ′ the family of ∆ ’s such that one of
the previous inverse branches gi : ∆κ2r → Vi passes through as, that is, Vi contains
as. The above claim implies that ∑L (F ′

s) ≥ (1−δ )(1−2ν)dkn. There are at most
dkn terms in this sum. We only consider the family S of the indices s such that
L (F ′

s) ≥ 1−3
√
ν . Since L (F ′

s) ≤ 1 for every s, we have

#S +(dkn −#S )(1−3
√
ν) ≥∑L (F ′

s) ≥ (1− δ )(1−2ν)dkn.

Therefore, since δ is small, we have #S ≥ (1−
√
ν)dkn. For any index s ∈ S

and for ∆ in F ′
s , by Lemma 1.55, the corresponding inverse branch on ∆κr, which
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passes through as, has diameter ≤ εd−n/2. By Theorem 1.54, f n admits an inverse
branch defined on the ball Br and passing through as, with diameter ≤ d−n/2. This
implies the result.

Proof of the claim. Let νl denote the mass of Rl ∧ [∆κ2r]. Then, ∑νl is the mass of
R∧ [∆κ2r]. Recall that this mass is smaller than ν . By definition, νldkl is the number
of points in f l(Y )∩∆κ2r, counted with multiplicity. We only have to consider the
case ν < 1. So, we have ν0 = 0 and ∆κ2r does not intersect Y , the critical values
of f . It follows that ∆κ2r admits dk inverse branches for f . By definition of ν1, there
are at most ν1dk such inverse branches which intersect Y , i.e. the images intersect Y .
So, (1− ν1)dk of them do not meet Y and the image of such a branch admits dk

inverse branches for f . We conclude that ∆κ2r admits at least (1− ν1)d2k inverse
branches for f 2. By induction, we construct for f n at least (1−ν1 −·· ·−νn−1)dkn

inverse branches on ∆κ2r.
Now, observe that the mass of ( f n)∗(ωFS)∧ [∆κr] is exactly the area of f−n(∆κr).

We know that it is smaller than Ad(k−1)n. It is not difficult to see that ∆κ2r has at
most νdkn inverse branches with area ≥ Aν−1d−n. This completes the proof. #
End of the proof of Theorem 1.45. Let a be a point out of the exceptional set E de-
fined in Theorem 1.47 for X = Pk. Fix ε > 0 and a constant α > 0 small enough. If
µ ′ is a limit value of d−kn( f n)∗(δa), it is enough to show that ‖µ ′ − µ‖ ≤ 2α+ 2ε .
Consider Z := {ν(R,z) > ε} and τ as in Proposition 1.50 for X = Pk. We have
τ(a) = 0. So, for r large enough we have τr(a) ≤ α . Consider all the negative orbits
O j of order r j ≤ r

O j =
{

a( j)
−r j

, . . . ,a( j)
−1,a

( j)
0

}

with f (a( j)
−i−1) = a( j)

−i and a( j)
0 = a such that a( j)

−r j
"∈ Z and a( j)

−i ∈ Z for i "= r j . Each
orbit is repeated according to its multiplicity. Let Sr denote the family of points
b ∈ f−r(a) such that f i(b) ∈ Z for 0 ≤ i ≤ r. Then f−r(a) \ Sr consists of the
preimages of the points a( j)

−r j
. So, by definition of τr, we have

d−kr#Sr = τr(a) ≤ α
and

d−kr∑
j

dk(r−r j) = d−kr#( f−r(a)\ Sr) = 1− τr(a) ≥ 1−α.

We have for n ≥ r

d−kn( f n)∗(δa) = d−kn ∑
b∈Sr

( f (n−r))∗(δb)+ d−kn∑
j
( f (n−r j))∗

(
δ

a( j)
−r j

)
.

Since d−kn( f n)∗ preserves the mass of any measure, the first term in the last sum
is of mass d−kr#Sr = τr(a) ≤ α and the second term is of mass ≥ 1−α . We apply
Proposition 1.51 to the Dirac masses at a( j)

−r j
. We deduce that if µ ′ is a limit value

of d−kn( f n)∗(δa) then
‖µ ′ − µ‖ ≤ 2α+ 2ε.

This completes the proof of the theorem. #
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We have the following more general result. When X is not normal, one has an
analogous result for the lift of g to the normalization of X .

Theorem 1.56. Let X be an irreducible analytic set of dimension p, invariant
under f . Let g denote the restriction of f to X and EX the exceptional set of g.
Assume that X is a normal analytic space. Then d−pn(gn)∗(δa) converge to
µX := (degX)−1T p ∧ [X ] if and only if a is out of EX . Moreover, the convex set of
probability measures on X which are totally invariant under g, is of finite dimension.

Proof. The proof of the first assertion follows the same lines as in Theorem 1.45.
We use the fact that g is the restriction of a holomorphic map in Pk in order to
define the ramification current R. The assumption that X is normal allows to define
d−pn(gn)∗(δa). We prove the second assertion. Observe that an analytic set, totally
invariant by gn, is not necessarily totally invariant by g, but it is a union of compo-
nents of such sets, see Theorem 1.47. Therefore, we can replace g with an iterate gn

in order to assume that g fixes all the components of all the totally invariant analytic
sets. Let µ ′ be an extremal element in the convex set of totally invariant probability
measures and X ′ the smallest totally invariant analytic set such that µ ′(X ′) = 1. The
first assertion applied to X ′ implies that µ ′ = µX ′ . Hence, the set of such µ ′ is finite.
We use a normalization of X ′ if necessary. +,

The following result due to Briend-Duval [BD1], shows that repelling periodic
points are equidistributed on the support of the Green measure.

Theorem 1.57. Let Pn denote the set of repelling periodic points of period n on the
support of µ . Then the sequence of measures

µn := d−kn ∑
a∈Pn

δa

converges to µ .

Proof. By Proposition 1.3, the number of periodic points of period n of f , counted
with multiplicity, is equal to (dn − 1)−1(dk(n+1) − 1). Therefore, any limit value
µ ′ of µn is of mass ≤ 1. Fix a small constant ε > 0. It is enough to check that for
µ-almost every point a ∈ Pk, there is a ball B centered at a, arbitrarily small, such
that #Pn∩B ≥ (1−ε)dknµ(B) for large n. We will use in particular a trick due to X.
Buff, which simplifies the original proof.

Since µ is PC, it has no mass on analytic sets. So, it has no mass on the orbit
OY of Y , the set of critical values of f . Fix a point a on the support of µ and out
of OY . We have ν(R,a) = 0. By Proposition 1.51, there is a ball B of center a, with
sufficiently small radius, which admits (1− ε2)dkn inverse branches of diameter
≤ d−n/2 for f n when n is large enough. Choose a finite family of such balls Bi
of center bi with 1 ≤ i ≤ m such that µ(B1 ∪ . . .∪Bm) > 1− ε2µ(B) and each Bi
admits (1− ε2µ(B))dkn inverse branches of diameter ≤ d−n/2 for f n when n is
large enough. Choose balls B′

i ! Bi such that µ(B′
1 ∪ . . .∪B′

m) > 1− ε2µ(B).
Fix a constant N large enough. Since d−kn( f n)∗(δa) converge to µ , there are

at least (1 − 2ε2)dkN inverse branches for f N whose image intersects ∪B′
j and
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then with image contained in one of the B j. In the same way, we show that for
n large enough, each B j admits (1− 2ε2)µ(B)dk(n−N) inverse branches for f n−N

with images in B. Therefore, B admits at least (1−2ε2)2µ(B)dkn inverse branches
gi : B → Ui for f n with image Ui ! B. Observe that every holomorphic map
g : B → U ! B contracts the Kobayashi metric and then admits an attractive fixed
point z. Moreover, gl converges uniformly to z and ∩lgl(B) = {z}. Therefore, each
gi admits a fixed attractive point ai. This point is fixed and repelling for f n. They
are different since the Ui are disjoint. Finally, since µ is totally invariant, its support
is also totally invariant under f . Hence, ai, which is equal to ∩lgl

i(supp(µ)∩B), is
necessarily in supp(µ). We deduce that

#Pn ∩B ≥ (1−2ε2)2µ(B)dkn ≥ (1− ε)dknµ(B).

This completes the proof. +,

Note that the periodic points ai, constructed above, satisfy ‖(D f n)−1(ai)‖ "
d−n/2. Note also that in the previous theorem, one can replace Pn with the set of all
periodic points counting with multiplicity or not.

Exercise 1.58. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk as above.
Let K be a compact set such that f−1(K) ⊂ K. Show that either K contains Jk, the
Julia set of order k, or K is contained in the exceptional set E . Prove that a "∈ E if
and only if ∪ f−n(a) is Zariski dense.

Exercise 1.59. Let f be as above and U an open set which intersects the Julia set
Jk. Show that ∪n≥0 f n(U) is a Zariski dense open set of Pk. Deduce that f is topo-
logically transitive on Jk, that is, for any given non-empty open sets V,W on Jk,
there is an integer n ≥ 0 such that f n(V )∩W "= ∅. If E = ∅, show that f n(U) = Pk

for n large enough. If E ∩Jk = ∅, show that f n(V ) = Jk for n large enough.

Exercise 1.60. Assume that p is a repelling fixed point in Jk. If g is another en-
domorphism close enough to f in Hd(Pk) such that g(p) = p, show that p belongs
also to the Julia set of order k of g. Hint: use that g .→ µg is continuous.

Exercise 1.61. Using Example 1.10, construct a map f in Hd(Pk), d ≥ 2, such that
for n large enough, every fiber of f n contains more than d(k−1/2)n points. Deduce
that there is Zariski dense open set in Hd(Pk) such that if f is in that Zariski open
set, its exceptional set is empty.

Exercise 1.62. Let ε be a fixed constant such that 0 < ε < 1. Let P′
n the set of

repelling periodic points a of prime period n on the support of µ such that all
the eigenvalues of D f n at a are of modulus ≥ (d − ε)n/2. Show that d−kn∑a∈P′

n
δa

converges to µ .

Exercise 1.63. Let g be as in Theorem 1.56. Show that repelling periodic points
on supp(µX ) are equidistributed with respect to µX . In particular, they are Zariski
dense.
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1.5 Equidistribution of Varieties

In this paragraph, we consider the inverse images by f n of varieties in Pk. The
geometrical method in the last paragraph is quite difficult to apply here. Indeed,
the inverse image of a generic variety of codimension p < k is irreducible of degree
O(d pn). The pluripotential method that we introduce here is probably the right
method for the equidistribution problem. Moreover, it should give some precise
estimates on the convergence, see Remark 1.71.

The following result, due to the authors, gives a satisfactory solution in the case
of hypersurfaces. It was proved for Zariski generic maps by Fornæss-Sibony in
[FS3, S3] and for maps in dimension 2 by Favre-Jonsson in [FJ]. More precise
results are given in [DS9] and in [FJ, FJ1] when k = 2. The proof requires some
self-intersection estimates for currents, due to Demailly-Méo.

Theorem 1.64. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Let
Em denote the union of the totally invariant proper analytic sets in Pk which are
minimal, i.e. do not contain smaller ones. Let S be a positive closed (1,1)-current
of mass 1 on Pk whose local potentials are not identically −∞ on any component of
Em. Then, d−n( f n)∗(S) converge weakly to the Green (1,1)-current T of f .

The following corollary gives a solution to the equidistribution problem for
hypersurfaces: the exceptional hypersurfaces belong to a proper analytic set in the
parameter space of hypersurfaces of a given degree.

Corollary 1.65. Let f , T and Em be as above. If H is a hypersurface of degree s in
Pk, which does not contain any component of Em, then s−1d−n( f n)∗[H] converge to
T in the sense of currents.

Note that ( f n)∗[H] is the current of integration on f−n(H) where the components
of f−n(H) are counted with multiplicity.

Sketch of the proof of Theorem 1.64. We can write S = T + ddcu where u is a
p.s.h. function modulo T , that is, the difference of quasi-potentials of S and of T .
Subtracting from u a constant allows to assume that 〈µ ,u〉 = 0. We call u the dy-
namical quasi-potential of S. Since T has continuous quasi-potentials, u satisfies
analogous properties that quasi-p.s.h. functions do. We are mostly concerned with
the singularities of u.

The total invariance of T and µ implies that the dynamical quasi-potential
of d−n( f n)∗(S) is equal to un := d−nu ◦ f n. We have to show that this sequence
of functions converges to 0 in L1(Pk). Since u is bounded from above, we have
limsupun ≤ 0. Assume that un do not converge to 0. By Hartogs’ lemma, see
Proposition A.20, there is a ball B and a constant λ > 0 such that un ≤−λ on B for
infinitely many indices n. It follows that u≤−λdn on f n(B) for such an index n. On
the other hand, the exponential estimate in Theorem A.22 implies that ‖eα |u|‖L1 ≤ A
for some positive constants α and A independent of u. If the multiplicity of f at
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every point is ≤ d − 1, then a version of Lojasiewicz’s theorem implies that f n(B)
contains a ball of radius 4 e−c(d−1)n

, c > 0. Therefore, we have

e−2kc(d−1)n
eλdnα "

∫

f n(B)
eλdnαωk

FS ≤
∫

Pk
eα |u|ωk

FS.

This contradicts the above exponential estimate.
In general, by Lemma 1.66 below, f n(B) contains always a ball of radius4 e−cdn

.
So, a slightly stronger version of the above exponential estimate will be enough
to get a contradiction. We may improve this exponential estimate: if the Lelong
numbers of S are small, we can increase the constant α and get a contradiction; if
the Lelong numbers of Sn are small, we replace S with Sn.

The assumption un <−λdn on f n(B) allows to show that all the limit currents of
the sequence d−n( f n)∗(S) have Lelong numbers larger than some constant ν > 0. If
S′ is such a current, there are other currents S′n such that S′ = d−n( f n)∗(S′n). Indeed,
if S′ is the limit of d−ni( f ni)∗(S) one can take S′n a limit value of d−ni+n( f ni−n)∗(S).

Let a be a point such that ν(S′n,a) ≥ ν . The assumption on the potentials of
S allows to prove by induction on the dimension of the totally invariant analytic
sets that un converge to 0 on the maximal totally invariant set E . So, a is out of
E . Lemma 1.49 allows to construct many distinct points in f−n(a). The identity
S′ = d−n( f n)∗(S′n) implies an estimate from below of the Lelong numbers of S′ on
f−n(a). This holds for every n. Finally, this permits to construct analytic sets of
large degrees on which we have estimates on the Lelong numbers of S′. Therefore,
S′ has a too large self-intersection. This contradicts an inequality of Demailly-Méo
[DE,ME3] and completes the proof. Note that the proof of Demailly-Méo inequality
uses Hörmander’s L2 estimates for the ∂ -equation. #

The following lemma is proved in [DS9]. It also holds for meromorphic maps.
Some earlier versions were given in [FS3] and in terms of Lebesgue measure in
[FJ, G2].

Lemma 1.66. There is a constant c > 0 such that if B is a ball of radius r, 0 < r < 1,
in Pk, then f n(B) contains a ball Bn of radius exp(−cr−2kdn) for any n ≥ 0.

The ball Bn is centered at f n(an) for some point an ∈ B which is not necessarily
the center of B. The key point in the proof of the lemma is to find a point an with
an estimate from below on the Jacobian of f n at an. If u is a quasi-potential of the
current of integration on the critical set, the logarithm of this Jacobian is essentially
the value of u + u ◦ f + · · ·+ u ◦ f n−1 at an. So, in order to prove the existence of a
point an with a good estimate, it is enough to bound the L1 norm of the last function.
One easily obtains the result using the operator f ∗ : DSH(Pk) → DSH(Pk) and its
iterates, as it is done for f∗ in Proposition 1.34.

Remark 1.67. Let C denote the convex compact set of totally invariant positive
closed (1,1)-currents of mass 1 on Pk, i.e. currents S such that f ∗(S) = dS. De-
fine an operator ∨ on C . If S1, S2 are elements of C and u1,u2 their dynamical
quasi-potentials, then ui ≤ 0. Since 〈µ ,ui〉 = 0 and ui are upper semi-continuous,



202 Tien-Cuong Dinh and Nessim Sibony

we deduce that ui = 0 on supp(µ). Define S1 ∨S2 := T +ddc max(u1,u2). It is easy
to check that S1 ∨ S2 is an element of C . An element S is said to be minimal if
S = S1 ∨S2 implies S1 = S2 = S. It is clear that T is not minimal if C contains other
currents. In fact, for S in C , we have T ∨S = T . A current of integration on a totally
invariant hypersurface is a minimal element. It is likely that C is generated by a
finite number of currents, the operation ∨, convex hulls and limits.

Example 1.68. If f is the map given in Example 1.11, the exceptional set Em is the
union of the k + 1 attractive fixed points

[0 : · · · : 0 : 1 : 0 : · · · : 0].

The convergence of s−1d−n( f n)∗[H] towards T holds for hypersurfaces H of degree
s which do not contain these points. If π : Ck+1 \ {0} → Pk is the canonical pro-
jection, the Green (1,1)-current T of f is given by π∗(T ) = ddc(maxi log |zi|), or
equivalently T = ωFS + ddcv where

v[z0 : · · · : zk] := max
0≤i≤k

log |zi|−
1
2

log(|z0|2 + · · ·+ |zk|2).

The currents Ti of integration on {zi = 0} belong to C and Ti = T + ddcui with
ui := log |zi|−max j log |z j|. These currents are minimal. If α0, . . ., αk are positive
real numbers such that α := 1−∑αi is positive, then S := αT +∑αiTi is an element
of C . We have S = T + ddcu with u := ∑αiui. The current S is minimal if and only
if α = 0. One can obtain other elements of C using the operator ∨. We show that C
is infinite dimensional. Define for A := (α0, . . . ,αk) with 0 ≤ αi ≤ 1 and ∑αi = 1
the p.s.h. function vA by

vA :=∑αi log |zi|.

If A is a family of such (k + 1)-tuples A, define

vA := sup
A∈A

vA.

Then, we can define a positive closed (1,1)-currents SA on Pk by π∗(SA ) = ddcvA .
It is clear that SA belongs to C and hence C is of infinite dimension.

The equidistribution problem in higher codimension is much more delicate and
is still open for general maps. We first recall the following lemma.

Lemma 1.69. For every δ > 1, there is a Zariski dense open set H ∗
d (Pk) in Hd(Pk)

and a constant A > 0 such that for f in H ∗
d (Pk), the maximal multiplicity δn of f n

at a point in Pk is at most equal to Aδ n. In particular, the exceptional set of such a
map f is empty when δ < d.

Proof. Let X be a component of a totally invariant analytic set E of pure dimension
p ≤ k− 1. Then, f permutes the components of E . We deduce that X is totally in-
variant under f n for some n ≥ 1. Lemma 1.48 implies that the maximal multiplicity
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of f n at a point in X is at least equal to d(k−p)n. Therefore, the second assertion in
the lemma is a consequence of the first one.

Fix an N large enough such that δN > 2kk!. Let H ∗
d (Pk) be the set of f such

that δN ≤ 2kk!. This set is Zariski open in Hd(Pk). Since the sequence (δn) is sub-
multiplicative, i.e. δn+m ≤ δnδm for n,m ≥ 0, if f is in H ∗

d (Pk), we have δN < δN ,
hence δn ≤ Aδ n for A large enough and for all n. It remains to show that H ∗

d (Pk) is
not empty. Choose a rational map h : P1 → P1 of degree d whose critical points are
simple and have disjoint infinite orbits. Observe that the multiplicity of hN at every
point is at most equal to 2. We construct the map f using the method described in
Example 1.10. We have f N ◦Π = Π ◦ f̂ N . Consider a point x in Pk and a point x̂
in Π−1(x). The multiplicity of f̂ N at x̂ is at most equal to 2k. It follows that the
multiplicity of f N at x is at most equal to 2kk! since Π has degree k!. Therefore, f
satisfies the desired inequality. +,

We have the following result due to the authors [DS10].

Theorem 1.70. There is a Zariski dense open set H ∗
d (Pk) in Hd(Pk) such that if f

is in H ∗
d (Pk), then d−pn( f n)∗(S)→ T p uniformly on positive closed (p, p)-currents

S of mass 1 on Pk. In particular, the Green (p, p)-current T p is the unique positive
closed (p, p)-current of mass 1 which is totally invariant. If V is an analytic set of
pure codimension p and of degree s in Pk, then s−1d−pn( f n)∗[V ] converge to T p in
the sense of currents.

Sketch of proof. The proof uses the super-potentials of currents. In order to
simplify the notation, introduce the dynamical super-potential V of S. Define
V := US −UT p + c where US,UT p are super-potentials of S,T p and the constant
c is chosen so that V (T k−p+1) = 0. Using a computation as in Theorem 1.32, we
obtain that the dynamical super-potential of d−pn( f n)∗(S) is equal to d−nV ◦Λn

where Λ : Ck−p+1(Pk) → Ck−p+1(Pk) is the operator d−p+1 f∗. Observe that the
dynamical super-potential of T p is identically 0. In order to prove the convergence
d−pn( f n)∗(S)→ T p, we only have to check that d−nV (Λn(R))→ 0 for R smooth in
Ck−p+1(Pk). Since T p has a continuous super-potential, V is bounded from above.
Therefore, limsupd−nV (Λn(R)) ≤ 0.

Recall that US(R) = UR(S). So, in order to prove that liminfd−nV (Λn(R)) ≥ 0,
it is enough to estimate infS US(Λn(R)), or equivalently, we have to estimate the
capacity of Λn(R) from below. Assume in order to explain the idea that the support
of R is contained in a compact set K such that f (K) ⊂ K and K does not inter-
sect the critical set of f (this is possible only when p = 1). We easily obtain that
‖Λn(R)‖∞ " An for some constant A > 0. The estimate in Theorem A.47 implies
the result. In the general case, if H ∗

d (Pk) is chosen as in Lemma 1.69 for δ small
enough and if f is in H ∗

d (Pk), we can prove the estimate cap(Λn(R)) " d′n for any
fixed constant d′ such that 1 < d′ < d. This implies the desired convergence of super-
potentials. The main technical difficulty is that when R hits the critical set, then
Λ(R) is not bounded. The estimates requires a smoothing and precise evaluation of
the error. #
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Remark 1.71. The above estimate on cap(Λn(R)) can be seen as a version of
Lojasiewicz’s inequality for currents. It is quite delicate to obtain. We also have an
explicit estimate on the speed of convergence. Indeed, we have for an appropriate
d′ < d:

dist2
(
d−pn( f n)∗(S),T p) := sup

‖Φ‖C2≤1
|〈d−pn( f n)∗(S)−T p,Φ〉| " d′nd−n.

The theory of interpolation between Banach spaces [T1] implies a similar estimate
for Φ Hölder continuous.

Exercise 1.72. If f := [zd
0 : · · · : zd

k ], show that {zp
1 = zq

2}, for arbitrary p,q, is invari-
ant under f . Show that a curve invariant under an endomorphism is an image of P1

or a torus, possibly singular.

Exercise 1.73. Let f be as in Example 1.68. Let S be a (p, p)-current with strictly
positive Lelong number at [1 : 0 : · · · : 0]. Show that any limit of d−pn( f n)∗(S) has
a strictly positive Lelong number at [1 : 0 : · · · : 0] and deduce that d−pn( f n)∗(S)
do not converge to T p. Note that for f generic, the multiplicity of the set of critical
values of f N at every point is smaller than δN .

Exercise 1.74. Let f be as in Theorem 1.70 for p = k and Λ the associated Perron-
Frobenius operator. If ϕ is a C 2 function on Pk, show that

‖Λn(ϕ)−〈µ ,ϕ〉‖∞ ≤ cd′nd−n

for some constant c > 0. Deduce that Λn(ϕ) converge uniformly to 〈µ ,ϕ〉. Give an
estimate of ‖Λn(ϕ)−〈µ ,ϕ〉‖∞ for ϕ Hölder continuous.

Exercise 1.75. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Assume
that V is a totally invariant hypersurface, i.e. f−1(V ) = V . Let Vi denote the ir-
reducible components of V and hi minimal homogeneous polynomials such that
Vi = {hi = 0}. Define h = ∏hi. Show that h ◦ f = chd where c is a constant. If F
is a lift of f to Ck+1, prove that Jac(F) contains (∏hi)d−1 as a factor. Show that
V is contained in the critical set of f and deduce3 that degV ≤ k + 1. Assume now
that V is reducible. Find a totally invariant positive closed (1,1)-current of mass 1
which is not the Green current nor the current associated to an analytic set.

Exercise 1.76. Let u be a p.s.h. function in Ck, such that for λ ∈ C∗, u(λ z) =
log |λ |+ u(z). If {u < 0} is bounded in Ck, show that ddcu+ is a positive closed
current on Pk which is extremal in the cone of positive closed (1,1)-currents4.
Deduce that the Green (1,1)-current of a polynomial map of Ck which extends
holomorphically to Pk, is extremal.

Exercise 1.77. Let v be a subharmonic function on C. Suppose v(eiθ z) = v(z) for
every z ∈ C and for every θ ∈ R such that eiθdn = 1 for some integer n. Prove

3 It is known that in dimension k = 2, V is a union of at most 3 lines, [CL, FS7, SSU].
4 Unpublished result by Berndtsson-Sibony.
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that v(z) = v(|z|) for z ∈ C. Hint: use the Laplacian of v. Let f be as in Example
1.68, R a current in Ck+1, and v a p.s.h. function on Ck+1 such that R = ddcv and
v(F(z)) = dv(z), where F(z) := (zd

0 , . . . ,zd
k ) is a lift of f to Ck+1. Show that v is

invariant under the action of the unit torus Tk+1 in Ck+1. Determine such functions
v. Recall that T is the unit circle in C and Tk+1 acts on Ck+1 by multiplication.

Exercise 1.78. Define the Desboves map f0 in M4(P2) as

f0[z0 : z1 : z2] := [z0(z3
1 − z3

2) : z1(z3
2 − z3

0) : z2(z3
0 − z3

1)].

Prove that f0 has 12 indeterminacy points. If σ is a permutation of coordinates,
compare f0 ◦σ and σ ◦ f0. Define

Φλ (z0,z1,z2) := z3
0 + z3

1 + z3
2 −3λ z0z1z2, λ ∈ C

and
L[z0 : z1 : z2] := [az0 : bz1 : cz2], a,b,c ∈ C.

Show that for Zariski generic L, fL := f0 +ΦλL is in H4(P2). Show that on the
curve {Φλ = 0} in P2, fL coincides with f0, and that f0 maps the cubic {Φλ = 0}
onto itself.5

Exercise 1.79. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Show
that there is a finite invariant set E , possibly empty, such that if H is a hyper-
surface such that H ∩ E = ∅, then d−n deg(H)−1( f n)∗[H] converge to the Green
(1,1)-current T of f .

1.6 Stochastic Properties of the Green Measure

In this paragraph, we are concerned with the stochastic properties of the equilibrium
measure µ associated to an endomorphism f . If ϕ is an observable, (ϕ ◦ f n)n≥0
can be seen as a sequence of dependent random variables. Since the measure is
invariant, these variables are identically distributed, i.e. the Borel sets {ϕ ◦ f n < t}
have the same µ measure for any fixed constant t. The idea is to show that the
dependence is weak and then to extend classical results in probability theory to our
setting. One of the key point is the spectral study of the Perron-Frobenius operator
Λ := d−k f∗. It allows to prove the exponential decay of correlations for d.s.h. and
Hölder continuous observables, the central limit theorem, the large deviation the-
orem, etc. An important point is to use the space of d.s.h. functions as a space of
observables. For the reader’s convenience, we recall few general facts from ergodic
theory and probability theory. We refer to [KH, W] for the general theory.

5 This example was considered in [BO]. It gives maps in H4(P2) which preserves a cubic. The
cubic is singular if λ = 1, non singular if λ "= 1. In higher dimension, Beauville proved that a
smooth hypersurface of Pk, k ≥ 3, of degree > 1 does not have an endomorphism with dt > 1,
unless the degree is 2, k = 3 and the hypersurface is isomorphic to P1 ×P1 [BV].
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Consider a dynamical system associated to a map g : X → X which is measurable
with respect to a σ -algebra F on X . The direct image of a probability measure ν
by g is the probability measure g∗(ν) defined by

g∗(ν)(A) := ν(g−1(A))

for every measurable set A. Equivalently, for any positive measurable function ϕ ,
we have

〈g∗(ν),ϕ〉 := 〈ν,ϕ ◦ g〉.

The measure ν is invariant if g∗(ν) = ν . When X is a compact metric space and g
is continuous, the set M (g) of invariant probability measures is convex, compact
and non-empty: for any sequence of probability measures νN , the cluster points of

1
N

N−1

∑
n=0

(gn)∗(νN)

are invariant probability measures.
A measurable set A is totally invariant if ν(A \ g−1(A)) = ν(g−1(A) \A) = 0.

An invariant probability measure ν is ergodic if any totally invariant set is of zero
or full ν-measure. It is easy to show that ν is ergodic if and only if when ϕ ◦g = ϕ ,
for ϕ ∈ L1(ν), then ϕ is constant. Here, we can replace L1(ν) with Lp(ν) with
1 ≤ p ≤ +∞. The ergodicity of ν is also equivalent to the fact that it is extremal in
M (g). We recall Birkhoff’s ergodic theorem, which is the analogue of the law of
large numbers for independent random variables [W].

Theorem 1.80 (Birkhoff). Let g : X → X be a measurable map as above. Assume
that ν is an ergodic invariant probability measure. Let ϕ be a function in L1(ν).
Then

1
N

N−1

∑
n=0

ϕ(gn(x)) → 〈ν,ϕ〉

almost everywhere with respect to ν .

When X is a compact metric space, we can apply Birkhoff’s theorem to contin-
uous functions ϕ and deduce that for ν almost every x

1
N

N−1

∑
n=0

δgn(x) → ν,

where δx denotes the Dirac mass at x. The sum

SN(ϕ) :=
N−1

∑
n=0

ϕ ◦ gn

is called Birkhoff’s sum. So, Birkhoff’s theorem describes the behavior of 1
N SN(ϕ)

for an observable ϕ . We will be concerned with the precise behavior of SN(ϕ) for
various classes of functions ϕ .
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A notion stronger than ergodicity is the notion of mixing. An invariant probability
measure ν is mixing if for every measurable sets A,B

lim
n→∞

ν(g−n(A)∩B) = ν(A)ν(B).

Clearly, mixing implies ergodicity. It is not difficult to see that ν is mixing if and
only if for any test functions ϕ ,ψ in L∞(ν) or in L2(ν), we have

lim
n→∞

〈ν,(ϕ ◦ gn)ψ〉 = 〈ν,ϕ〉〈ν,ψ〉.

The quantity
In(ϕ ,ψ) := |〈ν,(ϕ ◦ gn)ψ〉− 〈ν,ϕ〉〈ν,ψ〉|

is called the correlation at time n of ϕ and ψ . So, mixing is equivalent to the
convergence of In(ϕ ,ψ) to 0. We say that ν is K-mixing if for every ψ ∈ L2(ν)

sup
‖ϕ‖L2(ν)≤1

In(ϕ ,ψ) → 0.

Note that K-mixing is equivalent to the fact that the σ -algebra F∞ := ∩g−n(F )
contains only sets of zero and full measure. This is the strongest form of mixing for
observables in L2(ν). It is however of interest to get a quantitative information on
the mixing speed for more regular observables like smooth or Hölder continuous
functions.

Consider now an endomorphism f of algebraic degree d ≥ 2 of Pk as above and
its equilibrium measure µ . We know that µ is totally invariant: f ∗(µ) = dkµ . If ϕ
is a continuous function, then

〈µ ,ϕ ◦ f 〉 = 〈d−k f ∗(µ),ϕ ◦ f 〉 = 〈µ ,d−k f∗(ϕ ◦ f )〉 = 〈µ ,ϕ〉.

We have used the obvious fact that f∗(ϕ ◦ f ) = dkϕ . So, µ is invariant. We have the
following proposition.

Proposition 1.81. The Perron-Frobenius operator Λ := d−k f∗ has a continuous
extension of norm 1 to L2(µ). Moreover, the adjoint of Λ satisfies tΛ(ϕ) = ϕ ◦ f
and Λ ◦ tΛ = id. Let L2

0(µ) denote the hyperplane of L2(µ) defined by 〈µ ,ϕ〉 = 0.
Then, the spectral radius of Λ on L2

0(µ) is also equal to 1.

Proof. Schwarz’s inequality implies that

| f∗(ϕ)|2 ≤ dk f∗(|ϕ |2).

Using the total invariance of µ , we get

〈µ , |Λ(ϕ)|2〉 ≤ 〈µ ,Λ(|ϕ |2)〉 = 〈µ , |ϕ |2〉.

Therefore,Λ has a continuous extension to L2(µ), with norm ≤ 1. Since Λ(1) = 1,
the norm of this operator is equal to 1. The properties on the adjoint of Λ are easily
deduced from the total invariance of µ .
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Let ϕ be a function in L2
0(µ) of norm 1. Then, ϕ ◦ f n is also in L2(µ) and of

norm 1. Moreover, Λn(ϕ ◦ f n), which is equal to ϕ , is of norm 1. So, the spectral
radius of Λ on L2

0(µ) is also equal to 1. +,

Mixing for the measure µ was proved in [FS1]. We give in this paragraph two
proofs of K-mixing. The first one is from [DS1] and does not use that µ is moderate.

Theorem 1.82. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Then,
its Green measure µ is K-mixing.

Proof. Let cψ := 〈µ ,ψ〉. Since µ is totally invariant, the correlations between two
observables ϕ and ψ satisfy

In(ϕ ,ψ) = |〈µ ,(ϕ ◦ f n)ψ〉− 〈µ ,ϕ〉〈µ ,ψ〉|
= |〈µ ,ϕΛn(ψ)〉− cψ〈µ ,ϕ〉|
= |〈µ ,ϕ(Λn(ψ)− cψ)〉|.

Hence,
sup

‖ϕ‖L2(µ)≤1
In(ϕ ,ψ) ≤ ‖Λn(ψ)− cψ‖L2(µ).

Since ‖Λ‖L2(µ) ≤ 1, in order to show that ‖Λn(ψ) − cψ‖L2(µ) → 0 for every
ψ ∈ L2(µ), it is enough to show that ‖Λn(ψ)− cψ‖L2(µ) → 0 for a dense family
of functions ψ ∈ L2(µ). So, we can assume that ψ is a d.s.h. function such that
|ψ | ≤ 1. We have |cψ | ≤ 1 and ‖Λn(ψ)− cψ‖L∞(µ) ≤ 2. Since µ is PB, we deduce
from Theorem 1.35 and Cauchy-Schwarz’s inequality that

‖Λn(ψ)− cψ‖L2(µ) " ‖Λn(ψ)− cψ‖1/2
L1(µ) " ‖Λn(ψ)− cψ‖1/2

DSH " d−n/2.

This completes the proof. For the last argument, we can also use continuous test
functions ψ and apply Proposition 1.46. We then obtain that Λn(ψ)− cψ converges
to 0 pointwise out of a pluripolar set. Lebesgue’s convergence theorem and the fact
that µ has no mass on pluripolar sets imply the result. +,

In what follows, we show that the equilibrium measure µ satisfies remarkable
stochastic properties which are quite hard to obtain in the setting of real dynam-
ical systems. We will see the effectiveness of the pluripotential methods which
replace the delicate estimates, used in some real dynamical systems. The follow-
ing result was recently obtained by Nguyen and the authors [DNS]. It shows that
the equilibrium measure is exponentially mixing and generalizes earlier results of
[DS1, DS6, FS1]. Note that d.s.h. observables may be everywhere discontinuous.

Theorem 1.83. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2
on Pk. Let µ be the Green measure of f . Then for every 1 < p ≤ +∞ there is a
constant c > 0 such that

|〈µ ,(ϕ ◦ f n)ψ〉− 〈µ ,ϕ〉〈µ ,ψ〉| ≤ cd−n‖ϕ‖Lp(µ)‖ψ‖DSH



Dynamics in Several Complex variables 209

for n ≥ 0, ϕ in Lp(µ) and ψ d.s.h. Moreover, for 0 ≤ ν ≤ 2 there is a constant c > 0
such that

|〈µ ,(ϕ ◦ f n)ψ〉− 〈µ ,ϕ〉〈µ ,ψ〉| ≤ cd−nν/2‖ϕ‖Lp(µ)‖ψ‖C ν

for n ≥ 0, ϕ in Lp(µ) and ψ of class C ν .

Proof. We prove the first assertion. Observe that the correlations

In(ϕ ,ψ) := |〈µ ,(ϕ ◦ f n)ψ〉− 〈µ ,ϕ〉〈µ ,ψ〉|

vanish if ψ is constant. Therefore, we can assume that 〈µ ,ψ〉 = 0. In which case,
we have

In(ϕ ,ψ) = |〈µ ,ϕΛn(ψ)〉|,

where Λ denotes the Perron-Frobenius operator associated to f .
We can also assume that ‖ψ‖DSH ≤ 1. Corollary 1.41 implies that for 1 ≤ q <∞,

‖Λn(ψ)‖Lq(µ) ≤ cqd−n

where c > 0 is a constant independent of n,q and ψ . Now, if q is chosen so that
p−1 + q−1 = 1, we obtain using Hölder’s inequality that

In(ϕ ,ψ) ≤ ‖ϕ‖Lp(µ)‖Λn(ψ)‖Lq(µ) ≤ cq‖ϕ‖Lp(µ)d
−n.

This completes the proof of the first assertion. The second assertion is proved in the
same way using Corollary 1.42. +,

Observe that the above estimates imply that for ψ smooth

lim
n→∞

sup
‖ϕ‖L2(µ)≤1

In(ϕ ,ψ) = 0.

Since smooth functions are dense in L2(µ), the convergence holds for every ψ in
L2(µ) and gives another proof of the K-mixing. The following result [DNS] gives
estimates for the exponential mixing of any order. It can be extended to Hölder
continuous observables using the second assertion in Theorem 1.83.

Theorem 1.84. Let f , d, µ be as in Theorem 1.83 and r ≥ 1 an integer. Then there
is a constant c > 0 such that

∣∣∣〈µ ,ψ0(ψ1 ◦ f n1) . . . (ψr ◦ f nr)〉−
r

∏
i=0

〈µ ,ψi〉
∣∣∣≤ cd−n

r

∏
i=0

‖ψi‖DSH

for 0 = n0 ≤ n1 ≤ ·· · ≤ nr, n := min0≤i<r(ni+1 −ni) and ψi d.s.h.

Proof. The proof is by induction on r. The case r = 1 is a consequence of Theorem
1.83. Suppose the result is true for r − 1, we have to check it for r. Without loss
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of generality, assume that ‖ψi‖DSH ≤ 1. This implies that m := 〈µ ,ψ0〉 is bounded.
The invariance of µ and the induction hypothesis imply that

∣∣∣〈µ ,m(ψ1 ◦ f n1) . . . (ψr ◦ f nr)〉−
r

∏
i=0

〈µ ,ψi〉
∣∣∣

=
∣∣∣〈µ ,mψ1(ψ2 ◦ f n2−n1) . . . (ψr ◦ f nr−n1)〉−m

r

∏
i=1

〈µ ,ψi〉
∣∣∣≤ cd−n

for some constant c > 0. In order to get the desired estimate, it is enough to show that
∣∣∣〈µ ,(ψ0 −m)(ψ1 ◦ f n1) . . . (ψr ◦ f nr)〉

∣∣∣≤ cd−n.

Observe that the operator ( f n)∗ acts on Lp(µ) for p ≥ 1 and its norm is bounded by
1. Using the invariance of µ and Hölder’s inequality, we get for p := r + 1

∣∣∣〈µ ,(ψ0 −m)(ψ1 ◦ f n1) . . . (ψr ◦ f nr)〉
∣∣∣

=
∣∣∣〈µ ,Λn1(ψ0 −m)ψ1 . . . (ψr ◦ f nr−n1)〉

∣∣∣

≤ ‖Λn1(ψ0 −m)‖Lp(µ)‖ψ1‖Lp(µ) . . .‖ψr ◦ f nr−n1‖Lp(µ)

≤ cd−n1‖ψ1‖Lp(µ) . . .‖ψr‖Lp(µ),

for some constant c > 0. Since ‖ψi‖Lp(µ) " ‖ψi‖DSH, the previous estimates imply
the result. Note that as in Theorem 1.83, it is enough to assume that ψi is d.s.h. for
i ≤ r−1 and ψr is in Lp(µ) for some p > 1. +,

The mixing of µ implies that for any measurable observable ϕ , the times se-
ries ϕ ◦ f n, behaves like independent random variables with the same distribution.
For example, the dependence of ϕ ◦ f n and ϕ is weak when n is large: if a,b are
real numbers, then the measure of {ϕ ◦ f n ≤ a and ϕ ≤ b} is almost equal to
µ{ϕ ◦ f n ≤ a}µ{ϕ ≤ b}. Indeed, it is equal to

〈
µ ,(1]−∞,a] ◦ϕ ◦ f n)(1]−∞,b] ◦ϕ)

〉
,

and when n is large, mixing implies that the last integral is approximatively equal to

〈µ ,1]−∞,a] ◦ϕ〉〈µ ,1]−∞,b] ◦ϕ〉= µ{ϕ ≤ a}µ{ϕ ≤ b} = µ{ϕ ◦ f n ≤ a}µ{ϕ ≤ b}.

The estimates on the decay of correlations obtained in the above results, give at
which speed the observables become “almost independent”. We are going to show
that under weak assumptions on the regularity of observables ϕ , the times series
ϕ ◦ f n, satisfies the Central Limit Theorem (CLT for short). We recall the classical
CLT for independent random variables. In what follows, E(·) denotes expectation,
i.e. the mean, of a random variable.

Theorem 1.85. Let (X ,F ,ν) be a probability space. Let Z1,Z2, . . . be independent
identically distributed (i.i.d. for short) random variables with values in R, and of
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mean zero, i.e. E(Zn) = 0. Assume also that 0 < E(Z2
n) < ∞. Then for any open

interval I ⊂ R and for σ := E(Z2
n)1/2, we have

lim
N→∞

ν
{

1√
N

N−1

∑
n=0

Zn ∈ I

}
=

1√
2πσ

∫

I
e−

t2

2σ2 dt.

The important hypothesis here is that the variables have the same distribution
(this means that for every interval I ⊂ R, 〈ν,1I ◦Zn〉 is independent of n, where 1I
is the characteristic function of I) and that they are independent. The result can be
phrased as follows. If we define the random variables ẐN by

ẐN :=
1√
N

N−1

∑
n=0

Zn,

then the sequence of probability measures (ẐN)∗(ν) on R converges to the proba-

bility measure of density 1√
2πσ e−

t2

2σ2 . This is also called the convergence in law.
We want to replace the random variables Zn with the functions ϕ ◦ f n on the

probability space (Pk,B,µ) where B is the Borel σ -algebra. The fact that µ is
invariant means exactly that ϕ ◦ f n are identically distributed. We state first a cen-
tral limit theorem due to Gordin [G], see also [V]. For simplicity, we consider a
measurable map g : (X ,F ) → (X ,F ) as above. Define Fn := g−n(F ), n ≥ 0,
the σ -algebra of g−n(A), with A ∈ F . This sequence is non-increasing. Denote by
E(ϕ |F ′) the conditional expectation of ϕ with respect to a σ -algebra F ′ ⊂ F . We
say that ϕ is a coboundary if ϕ = ψ ◦ g−ψ for some function ψ ∈ L2(ν).

Theorem 1.86 (Gordin). Let ν be an ergodic invariant probability measure on X.
Let ϕ be an observable in L1(ν) such that 〈ν,ϕ〉 = 0. Suppose

∑
n≥0

‖E(ϕ |Fn)‖2
L2(ν) < ∞.

Then 〈ν,ϕ2〉+ 2∑n≥1〈ν,ϕ(ϕ ◦ gn)〉 is a finite positive number which vanishes if
and only if ϕ is a coboundary. Moreover, if

σ :=
[
〈ν,ϕ2〉+ 2∑

n≥1
〈ν,ϕ(ϕ ◦ gn)〉

]1/2

is strictly positive, then ϕ satisfies the central limit theorem with variance σ : for
any interval I ⊂ R

lim
N→∞

ν
{

1√
N

N−1

∑
n=0

ϕ ◦ gn ∈ I

}
=

1√
2πσ

∫

I
e−

t2

2σ2 dt.

It is not difficult to see that a function u is Fn-measurable if and only if u = u′ ◦gn

with u′ F -measurable. Let L2(ν,Fn) denote the space of Fn-measurable functions
which are in L2(ν). Then, E(ϕ |Fn) is the orthogonal projection of ϕ ∈ L2(ν) into
L2(ν,Fn).
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A straighforward computation using the invariance of ν gives that the variance
σ in the above theorem is equal to

σ = lim
n→∞

n−1/2‖ϕ+ · · ·+ϕ ◦ gn−1‖L2(ν).

When ϕ is orthogonal to all ϕ ◦gn, we find that σ = ‖ϕ‖L2(µ). So, Gordin’s theorem
assumes a weak dependence and concludes that the observables satisfy the central
limit theorem.

Consider now the dynamical system associated to an endomorphism f of Pk as
above. Let B denote the Borel σ -algebra on Pk and define Bn := f−n(B). Since
the measure µ satisfies f ∗(µ) = dkµ , the norms ‖E(·|Bn)‖L2(µ) can be expressed
in terms of the operatorΛ . We have the following lemma.

Lemma 1.87. Let ϕ be an observable in L2(µ). Then

E(ϕ |Fn) =Λn(ϕ)◦ f n and ‖E(ϕ |Bn)‖Lp(µ) = ‖Λn(ϕ)‖Lp(µ),

for 1 ≤ p ≤ 2.

Proof. We have
〈
µ ,ϕ(ψ ◦ f n)

〉
=
〈
d−kn( f n)∗(µ),ϕ(ψ ◦ f n)

〉
=
〈
µ ,d−kn( f n)∗[ϕ(ψ ◦ f n)]

〉

=
〈
µ ,Λn(ϕ)ψ

〉
=
〈
µ , [Λn(ϕ)◦ f n][ψ ◦ f n]

〉
.

This proves the first assertion. The invariance of µ implies that ‖ψ ◦ f n‖Lp(µ) =
‖ψ‖Lp(µ). Therefore, the second assertion is a consequence of the first one. +,

Gordin’s Theorem 1.86, Corollaries 1.41 and 1.42, applied to q = 2, give the
following result.

Corollary 1.88. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk and µ
its equilibrium measure. Let ϕ be a d.s.h. function or a Hölder continuous function
on Pk, such that 〈µ ,ϕ〉 = 0. Assume that ϕ is not a coboundary. Then ϕ satisfies
the central limit theorem with the variance σ > 0 given by

σ2 := 〈µ ,ϕ2〉+ 2∑
n≥1

〈µ ,ϕ(ϕ ◦ f n)〉.

We give an interesting decomposition of the space L2
0(µ) which shows that Λ ,

acts like a “generalized shift”. Recall that L2
0(µ) is the space of functionsψ ∈ L2(µ)

such that 〈µ ,ψ〉 = 0. Corollary 1.88 can also be deduced from the following result.

Proposition 1.89. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk and
µ the corresponding equilibrium measure. Define

Vn := {ψ ∈ L2
0(µ), Λn(ψ) = 0}.

Then, we have Vn+1 = Vn ⊕V1 ◦ f n as an orthogonal sum and L2
0(µ) = ⊕∞n=0V1 ◦ f n

as a Hilbert sum. Let ψ = ∑ψn ◦ f n, with ψn ∈ V1, be a function in L2
0(µ).
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Then, ψ satisfies the Gordin’s condition, see Theorem 1.86, if and only if the
sum ∑n≥1 n‖ψn‖2

L2(µ) is finite. Moreover, if ψ is d.s.h. (resp. of class C ν , 0 < ν ≤ 2)

with 〈µ ,ψ〉 = 0, then ‖ψn‖L2(µ) " d−n (resp. ‖ψn‖L2(µ) " d−nν/2).

Proof. It is easy to check that V⊥
n = {θ ◦ f n, θ ∈ L2(µ)}. Let Wn+1 denote the

orthogonal complement of Vn in Vn+1. Suppose θ ◦ f n is in Wn+1. Then, Λ(θ ) = 0.
This gives the first decomposition in the proposition.

For the second decomposition, observe that ⊕∞n=0V1 ◦ f n is a direct orthogonal
sum. We only have to show that ∪Vn is dense in L2

0(µ). Let θ be an element in ∩V⊥
n .

We have to show that θ = 0. For every n, θ = θn ◦ f n for appropriate θn. Hence, θ is
measurable with respect to the σ -algebra B∞ := ∩n≥0Bn. We show that B∞ is the
trivial algebra. Let A be an element of B∞. Define An = f n(A). Since A is in B∞,
1A = 1An ◦ f n and Λn(1A) = 1An . K-mixing implies that Λn(1A) converges in L2(µ)
to a constant, see Theorem 1.82. So, 1An converges to a constant which is necessarily
0 or 1. We deduce that µ(An) converges to 0 or 1. On the other hand, we have

µ(An) = 〈µ ,1An〉 = 〈µ ,1An ◦ f n〉 = 〈µ ,1A〉 = µ(A).

Therefore, A is of measure 0 or 1. This implies the decomposition of L2
0(µ).

Suppose now that ψ := ∑ψn ◦ f n with Λ(ψn) = 0, is an element of L2
0(µ). We

have E(ψ |Bn) = ∑i≥nψi ◦ f i. So,

∑
n≥0

‖E(ψ |Bn)‖2
L2(µ) = ∑

n≥0
(n + 1)‖ψn‖2

L2(µ),

and ψ satisfies Gordin’s condition if and only if the last sum is finite.
Let ψ be a d.s.h. function with 〈µ ,ψ〉 = 0. It follows from Theorem 1.83 that

‖E(ψ |Bn)‖L2(µ) = sup
‖ϕ‖L2(µ)≤1

|〈µ ,(ϕ ◦ f n)ψ〉| " d−n.

Since ψn ◦ f n = E(ψ |Bn)−E(ψ |Bn+1), the above estimate implies that

‖ψn‖L2(µ) = ‖ψn ◦ f n‖L2(µ) " d−n.

The case of C ν observables is proved in the same way.
Observe that if (ψn ◦ f n)n≥0 is the sequence of projections of ψ on the factors of

the direct sum ⊕∞n=0V1 ◦ f n, then the coordinates of Λ(ψ) are (ψn ◦ f n−1)n≥1. +,

We continue the study with other types of convergence. Let us recall the almost
sure version of the central limit theorem in probability theory. Let Zn be ran-
dom variables, identically distributed in L2(X ,F ,ν), such that E(Zn) = 0 and
E(Z2

n) = σ2, σ > 0. We say that the almost sure central limit theorem holds if at
ν-almost every point in X , the sequence of measures

1
logN

N

∑
n=1

1
n
δn−1/2∑n−1

i=0 Zi
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converges in law to the normal distribution of mean 0 and variance σ . In particular,
ν-almost surely

1
logN

N

∑
n=1

1
n

1{
n−1/2∑n−1

i=0 Zi≤t0
} → 1√

2πσ

∫ t0

−∞
e−

t2

2σ2 dt,

for any t0 ∈ R. In the central limit theorem, we only get the ν-measure of the set
{N−1/2∑N−1

n=0 Zn < t0} when N goes to infinity. Here, we get an information at
ν-almost every point for the logarithmic averages.

The almost sure central limit theorem can be deduced from the so-called almost
sure invariance principle (ASIP for short). In the case of i.i.d. random variables as
above, this principle compares the variables ẐN with Brownian motions and gives
some information about the fluctuations of ẐN around 0.

Theorem 1.90. Let (X ,F ,ν) be a probability space. Let (Zn) be a sequence of i.i.d.
random variables with mean 0 and variance σ > 0. Assume that there is an α > 0
such that Zn is in L2+α(ν). Then, there is another probability space (X ′,F ′,ν ′)
with a sequence of random variables S′N on X ′ which has the same joint distribution
as SN := ∑N−1

n=0 Zn, and a Brownian motion B of variance σ on X ′ such that

|S′N −B(N)| ≤ cN1/2−δ ,

for some positive constants c,δ . It follows that

|N−1/2S′N −B(1)| ≤ cN−δ .

For weakly dependent variables, this type of result is a consequence of a theorem
due to Philipp-Stout [PS]. It gives conditions which imply that the ASIP holds.
Lacey-Philipp proved in [LP] that the ASIP implies the almost sure central limit
theorem. For holomorphic endomorphisms of Pk, we have the following result due
to Dupont which holds in particular for Hölder continuous observables [DP2].

Theorem 1.91. Let f be an endomorphism of algebraic degree d ≥ 2 as above and
µ its equilibrium measure. Let ϕ be an observable with values in R ∪ {−∞}
such that eϕ is Hölder continuous, H := {ϕ = −∞} is an analytic set and
|ϕ |" | logdist(·,H)|ρ near H for some ρ > 0. If 〈µ ,ϕ〉= 0 and ϕ is not a cobound-
ary, then the almost sure invariance principle holds for ϕ . In particular, the almost
sure central limit theorem holds for such observables.

The ASIP in the above setting says that there is a probability space (X ′,F ′,ν ′)
with a sequence of random variables S′N on X which has the same joint distribution
as SN := ∑N−1

n=0 ϕ ◦ f n, and a Brownian motion B of variance σ on X ′ such that

|S′N −B(N)| ≤ cN1/2−δ ,

for some positive constants c,δ .
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The ASIP implies other stochastic results, see [PS], in particular, the law of the
iterated logarithm. With our notations, it implies that for ϕ as above

limsup
N→∞

SN(ϕ)
σ
√

N log log(Nσ2)
= 1 µ-almost everywhere.

Dupont’s approach is based on the Philipp-Stout’s result applied to a Bernoulli
system and a quantitative Bernoulli property of the equilibrium measure of f , i.e. a
construction of a coding tree. We refer to Dupont and Przytycki-Urbanski-Zdunik
[PU] for these results.

Recall the Bernoulli property of µ which was proved by Briend in [BJ1]. The
dimension one case is due to Mañé [MA] and Heicklen-Hoffman [HH]. Denote
by (Σ ,ν,σ) the one-sided dk-shift, where Σ := {1, . . . ,dk}N, ν is the probability
measure on Σ induced by the equilibrium probability measure on {1, . . . ,dk} and
σ : Σ → Σ is the dk to 1 map defined by σ(α0,α1, . . .) = (α1,α2, . . .).
Theorem 1.92. Let f and µ be as above. Then (Pk,µ , f ) is measurably conjugated
to (Σ ,ν,σ). More precisely, there is a measurable map π : Σ → Pk, defined out of a
set of zero ν-measure, which is invertible out of a set of zero µ-measure, such that
π∗(ν) = µ and f = π ◦σ ◦π−1 µ-almost everywhere.

The proof uses a criterion, the so called tree very weak Bernoulli property (tree-
vwB for short) due to Hoffman-Rudolph [HR]. One can use Proposition 1.51 in
order to check this criterion.

The last stochastic property we consider here is the large deviations theorem. As
above, we first recall the classical result in probability theory.

Theorem 1.93. Let Z1,Z2, . . . be independent random variables on (X ,F ,ν), iden-
tically distributed with values in R, and of mean zero, i.e. E(Z1) = 0. Assume also
that for t ∈ R, exp(tZn) is integrable. Then, the limit

I(ε) := − lim
N→∞

logν
{∣∣∣∣∣

Z1 + · · ·+ ZN

N

∣∣∣∣∣ > ε
}

.

exists and I(ε) > 0 for ε > 0.

The theorem estimates the size of the set where the average is away from zero,
the expected value. We have

ν
{∣∣∣∣∣

Z1 + · · ·+ ZN

N

∣∣∣∣∣> ε
}

∼ e−NI(ε).

Our goal is to give an analogue for the equilibrium measure of endomorphisms
of Pk. We first prove an abstract result corresponding to the above Gordin’s result
for the central limit theorem.

Consider a dynamical system g : (X ,F ,ν) → (X ,F ,ν) as above where ν is an
invariant probability measure. So, g∗ defines a linear operator of norm 1 from L2(ν)
into itself. We say that g has bounded Jacobian if there is a constant κ > 0 such that
ν(g(A)) ≤ κν(A) for every A ∈ F . The following result was obtained in [DNS].
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Theorem 1.94. Let g : (X ,F ,ν) → (X ,F ,ν) be a map with bounded Jacobian as
above. Define Fn := g−n(F ). Letψ be a bounded real-valued measurable function.
Assume there are constants δ > 1 and c > 0 such that

〈
ν,eδ

n|E(ψ|Fn)−〈ν,ψ〉|〉≤ c for every n ≥ 0.

Then ψ satisfies a weak large deviations theorem. More precisely, for every ε > 0,
there exists a constant hε > 0 such that

ν
{

x ∈ X :

∣∣∣∣∣
1
N

N−1

∑
n=0

ψ ◦ gn(x)−〈ν,ψ〉

∣∣∣∣∣> ε
}

≤ e−N(logN)−2hε

for all N large enough6.

We first prove some preliminary lemmas. The following one is a version of the
classical Bennett’s inequality see [DZ, Lemma 2.4.1].

Lemma 1.95. Let ψ be an observable such that ‖ψ‖L∞(ν) ≤ b for some constant
b ≥ 0, and E(ψ) = 0. Then

E(eλψ) ≤ e−λb + eλb

2

for every λ ≥ 0.

Proof. We can assume λ = 1. Consider first the case where there is a measurable
set A such that ν(A) = 1/2. Let ψ0 be the function which is equal to −b on A and
to b on X \A. We have ψ2

0 = b2 ≥ ψ2. Since ν(A) = 1/2, we have E(ψ0) = 0. Let
g(t) = a0t2 + a1t + a2, be the unique quadratic function such that h(t) := g(t)− et

satisfies h(b) = 0 and h(−b) = h′(−b) = 0. We have g(ψ0) = eψ0 .
Since h′′(t) = 2a0 − et admits at most one zero, h′ admits at most two zeros. The

fact that h(−b) = h(b) = 0 implies that h′ vanishes in ]− b,b[. Hence h′ admits
exactly one zero at −b and another one in ]− b,b[. We deduce that h′′ admits a
zero. This implies that a0 > 0. Moreover, h vanishes only at −b, b and h′(b) "= 0. It
follows that h(t) ≥ 0 on [−b,b] because h is negative near +∞. Thus, et ≤ g(t) on
[−b,b] and then eψ ≤ g(ψ).

Since a0 > 0, if an observable φ satisfies E(φ) = 0, then E(g(φ)) is an increasing
function of E(φ2). Now, using the properties of ψ and ψ0, we obtain

E(eψ) ≤ E(g(ψ)) ≤ E(g(ψ0)) = E(eψ0) =
e−b + eb

2
.

This completes the proof under the assumption that ν(A) = 1/2 for some measur-
able set A.

The general case is deduced from the previous particular case. Indeed, it is
enough to apply the first case to the disjoint union of (X ,F ,ν) with a copy

6 In the LDT for independent random variables, there is no factor (logN)−2 in the estimate.
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(X ′,F ′,ν ′) of this space, i.e. to the space (X ∪ X ′,F ∪F ′, ν2 + ν ′
2 ), and to the

function equal to ψ on X and on X ′. +,

Lemma 1.96. Let ψ be an observable such that ‖ψ‖L∞(ν) ≤ b for some constant
b ≥ 0, and E(ψ |F1) = 0. Then

E(eλψ |F1) ≤
e−λb + eλb

2

for every λ ≥ 0.

Proof. We consider the desintegration of ν with respect to g. For ν-almost every x∈
X , there is a positive measure νx on g−1(x) such that if ϕ is a function in L1(ν) then

〈ν,ϕ〉 =
∫

X
〈νx,ϕ〉dν(x).

Since ν is g-invariant, we have

〈ν,ϕ〉 = 〈ν,ϕ ◦ g〉=
∫

X
〈νx,ϕ ◦ g〉dν(x) =

∫

X
‖νx‖ϕ(x)dν(x).

Therefore, νx is a probability measure for ν-almost every x. Using also the
invariance of ν , we obtain for ϕ and φ in L2(ν) that

〈ν,ϕ(φ ◦ g)〉 =
∫

X
〈νx,ϕ(φ ◦ g)〉dν(x) =

∫

X
〈νx,ϕ〉φ(x)dν(x)

=
∫

X
〈νg(x),ϕ〉φ(g(x))dν(x).

We deduce that
E(ϕ |F1)(x) = 〈νg(x),ϕ〉.

So, the hypothesis in the lemma is that 〈νx,ψ〉 = 0 for ν-almost every x. It suffices
to check that

〈νx,eλψ〉 ≤
e−λb + eλb

2
.

But this is a consequence of Lemma 1.95 applied to νx instead of ν . +,

We continue the proof of Theorem 1.94. Without loss of generality we
can assume that 〈ν,ψ〉 = 0 and |ψ | ≤ 1. The general idea is to write ψ =
ψ ′ +(ψ ′′ −ψ ′′ ◦ g) for functions ψ ′ and ψ ′′ in L2(ν) such that

E(ψ ′ ◦ gn|Fn+1) = 0, n ≥ 0.

In the language of probability theory, these identities mean that (ψ ′ ◦ gn)n≥0 is a
reversed martingale difference as in Gordin’s approach, see also [V]. The strategy
is to prove the weak LDT for ψ ′ and for the coboundaryψ ′′ −ψ ′′ ◦g. Theorem 1.94
is then a consequence of Lemmas 1.99 and 1.101 below.
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Let Λg denote the adjoint of the operator ϕ .→ ϕ ◦ g on L2(ν). These operators
are of norm 1. The computation in Lemma 1.96 shows that E(ϕ |F1) = Λg(ϕ) ◦ g.
We obtain in the same way that E(ϕ |Fn) =Λn

g (ϕ)◦ gn. Define

ψ ′′ := −
∞

∑
n=1
Λn

g (ψ), ψ ′ := ψ− (ψ ′′ −ψ ′′ ◦ g).

Using the hypotheses in Theorem 1.94, we see that ψ ′ and ψ ′′ are in L2(ν) with
norms bounded by some constant. However, we loose the uniform boundedness:
these functions are not necessarily in L∞(ν).

Lemma 1.97. We haveΛn
g (ψ ′) = 0 for n ≥ 1 and E(ψ ′ ◦gn|Fm) = 0 for m > n ≥ 0.

Proof. Clearly Λg(ψ ′′ ◦ g) = ψ ′′. We deduce from the definition of ψ ′′ that

Λg(ψ ′) =Λg(ψ)−Λg(ψ ′′)+Λg(ψ ′′ ◦ g) =Λg(ψ)−Λg(ψ ′′)+ψ ′′ = 0.

Hence, Λn
g (ψ ′) = 0 for n ≥ 1. For every function φ in L2(ν), since ν is invariant,

we have for m > n

〈ν,(ψ ′ ◦ gn)(φ ◦ gm)〉 = 〈ν,ψ ′(φ ◦ gm−n)〉 = 〈ν,Λm−n
g (ψ ′)φ〉 = 0.

It follows that E(ψ ′ ◦ gn|Fm) = 0. +,

Lemma 1.98. There are constants δ0 > 1 and c > 0 such that

ν{|ψ ′| > b} ≤ ce−δ
b
0 and ν{|ψ ′′| > b} ≤ ce−δ

b
0

for any b ≥ 0. In particular, tψ ′ and tψ ′′ are ν-integrable for every t ≥ 0.

Proof. Since ψ ′ := ψ− (ψ ′′ −ψ ′′ ◦ g) and ψ is bounded, it is enough to prove the
estimate on ψ ′′. Indeed, the invariance of ν implies that ψ ′′ ◦ g satisfies a similar
inequality.

Fix a positive constant δ1 such that 1 < δ 2
1 < δ , where δ is the constant

in Theorem 1.94. Define ϕ := ∑n≥1 δ 2n
1 |Λn

g (ψ)|. We first show that there is
a constant α > 0 such that ν{ϕ ≥ b} " e−αb for every b ≥ 0. Recall that
E(ψ |Fn) = Λn

g (ψ) ◦ gn. Using the hypothesis of Theorem 1.94, the inequality
∑ 1

2n2 ≤ 1 and the invariance of ν , we obtain for b ≥ 0

ν{ϕ ≥ b} ≤ ∑
n≥1
ν
{
|Λn

g (ψ)| ≥
δ−2n

1 b
2n2

}
≤ ∑

n≥1
ν
{
|E(ψ |Fn)| ≥

δ−2n
1 b
2n2

}

= ∑
n≥1
ν
{
δ n|E(ψ |Fn)| ≥

δ nδ−2n
1 b

2n2

}
" ∑

n≥1
exp

(
−δ nδ−2n

1 b
2n2

)
.

It follows that ν{ϕ ≥ b} " e−αb for some constant α > 0.
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We prove now the estimate ν{|ψ ′′| > b} ≤ ce−δ
b
0 . It is enough to consider the

case where b = 2l for some positive integer l. Recall that for simplicity we assumed
|ψ | ≤ 1. It follows that |E(ψ |Fn)| ≤ 1 and hence |Λn

g (ψ)| ≤ 1. We have

|ψ ′′| ≤ ∑
n≥1

|Λn
g (ψ)| ≤ δ−2l

1 ∑
n≥1
δ 2n

1 |Λn
g (ψ)|+ ∑

1≤n≤l
|Λn

g (ψ)| ≤ δ−2l
1 ϕ+ l.

Consequently,
ν
{
|ψ ′′| > 2l

}
≤ ν

{
ϕ > δ 2l

1
}

" e−αδ
2l
1 .

It is enough to choose δ0 < δ1 and c large enough. +,

Lemma 1.99. The coboundaryψ ′′ −ψ ′′ ◦ g satisfies the LDT.

Proof. Given a function φ ∈ L1(µ), recall that Birkhoff’s sum SN(φ) is defined by

S0(φ) := 0 and SN(φ) :=
N−1

∑
n=0

φ ◦ gn for N ≥ 1.

Observe that SN(ψ ′′ −ψ ′′ ◦ g) = ψ ′′ −ψ ′′ ◦ gN . Consequently, for a given ε > 0,
using the invariance of ν , we have

ν
{
|SN(ψ ′′ −ψ ′′ ◦ g)|> Nε

}
≤ ν

{
|ψ ′′ ◦ gN | > Nε

2

}
+ µ

{
|ψ ′′| > Nε

2

}

= 2ν
{
|ψ ′′| > Nε

2

}
.

Lemma 1.98 implies that the last expression is smaller than e−Nhε for some hε > 0
and for N large enough. This completes the proof. +,

It remains to show that ψ ′ satisfies the weak LDT. We use the following lemma.

Lemma 1.100. For every b ≥ 1, there are Borel sets WN such that ν(WN)≤ cNe−δ
b
0

and
∫

X\WN

eλSN(ψ ′)dν ≤ 2

[
e−λb + eλb

2

]N

,

where c > 0 is a constant independent of b.

Proof. For N = 1, define W := {|ψ ′| > b}, W ′ := g(W ) and W1 := g−1(W ′). Recall
that the Jacobian of ν is bounded by some constant κ . This and Lemma 1.98 imply
that

ν(W1) = ν(W ′) = ν(g(W )) ≤ κν(W ) ≤ ce−δ
b
0

for some constant c > 0. We also have

∫

X\W1

eλS1(ψ ′)dν =
∫

X\W1

eλψ
′
dν ≤ eλb ≤ 2

[
e−λb + eλb

2

]
.

So, the lemma holds for N = 1.
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Suppose the lemma for N ≥ 1, we prove it for N + 1. Define

WN+1 := g−1(WN)∪W1 = g−1(WN ∪W ′).

We have

ν(WN+1) ≤ ν(g−1(WN))+ν(W1) = ν(WN)+ν(W1) ≤ c(N + 1)e−δ
b
0 .

We will apply Lemma 1.96 to the function ψ∗ such that ψ∗ = ψ ′ on X \W1 and
ψ∗ = 0 on W1. By Lemma 1.97, we have E(ψ∗|F1) = 0 since W1 is an element of
F1. The choice of W1 gives that |ψ∗| ≤ b. By Lemma 1.96, we have

E(eλψ
∗|F1) ≤

e−λb + eλb

2
on X for λ ≥ 0.

It follows that

E(eλψ
′ |F1) ≤

e−λb + eλb

2
on X \W1 for λ ≥ 0.

Now, using the fact that WN+1 and eλSN(ψ ′◦g) are F1-measurable, we can write
∫

X\WN+1

eλSN+1(ψ ′)dν =
∫

X\WN+1

eλψ
′
eλSN(ψ ′◦g)dν

=
∫

X\WN+1

E(eλψ
′ |F1)eλSN(ψ ′◦g)dν.

Since WN+1 = g−1(WN)∪W1, the last integral is bounded by

sup
X\W1

E(eλψ
′ |F1)

∫

X\g−1(WN)
eλSN(ψ ′◦g)dν

≤
[

e−λb + eλb

2

]∫

X\WN

eλSN(ψ ′)dν

≤ 2

[
e−λb + eλb

2

]N+1

,

where the last inequality follows from the induction hypothesis. So, the lemma
holds for N + 1. +,

The following lemma, together with Lemma 1.99, implies Theorem 1.94.

Lemma 1.101. The function ψ ′ satisfies the weak LDT.

Proof. Fix an ε > 0. By Lemma 1.100, we have, for every λ ≥ 0

ν
{
SN(ψ ′) ≥ Nε

}
≤ ν(WN)+ e−λNε

∫

X\WN

eλSN(ψ ′)dν

≤ cNe−δ
b
0 + 2e−λNε

[
e−λb + eλb

2

]N

.
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Let b := logN(logδ0)−1. We have

cNe−δ
b
0 = cNe−N ≤ e−N/2

for N large. We also have

e−λb + eλb

2
= ∑

n≥0

λ 2nb2n

(2n)!
≤ eλ

2b2
.

Therefore, if λ := uεb−2 with a fixed u > 0 small enough

2e−λNε

[
e−λb + eλb

2

]N

≤ 2e−ε
2b−2(1−u)Nu = 2e−2N(logN)−2hε

for some constant hε > 0. We deduce from the previous estimates that

ν
{
SN(ψ ′) ≥ Nε

}
≤ e−N(logN)−2hε

for N large. A similar estimate holds for −ψ ′. So, ψ ′ satisfies the weak LDT. +,

We deduce from Theorem 1.94, Corollaries 1.41 and 1.42 the following result
[DNS].

Theorem 1.102. Let f be a holomorphic endomorphism of Pk of algebraic degree
d ≥ 2. Then the equilibrium measure µ of f satisfies the weak large deviations the-
orem for bounded d.s.h. observables and also for Hölder continuous observables.
More precisely, if a function ψ is bounded d.s.h. or Hölder continuous, then for
every ε > 0 there is a constant hε > 0 such that

µ
{

z ∈ Pk :

∣∣∣∣∣
1
N

N−1

∑
n=0

ψ ◦ f n(z)−〈µ ,ψ〉

∣∣∣∣∣> ε
}

≤ e−N(logN)−2hε

for all N large enough.

The exponential estimate on Λn(ψ) is crucial in the proofs of the previous
results. It is nearly an estimate in sup-norm. Note that if ‖Λn(ψ)‖L∞(µ) converge
exponentially fast to 0 then ψ satisfies the LDT. This is the case for Hölder con-
tinuous observables in dimension 1, following a result by Drasin-Okuyama [DO],
and when f is a generic map in higher dimension, see Remark 1.71. The LDT was
recently obtained in dimension 1 by Xia-Fu in [X] for Lipschitz observables.

Exercise 1.103. Let g : X → X be a continuous map on a compact metric space X .
Deduce from Birkhoff’s theorem that any ergodic invariant measure of g is a limit of

1
N

N−1

∑
n=0

δgn(x)

for an appropriate x.
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Exercise 1.104. Show that if a Borel set A satisfies µ(A) > 0, then µ( f n(A))
converges to 1.

Exercise 1.105. Show that supψ In(ϕ ,ψ) with ψ smooth ‖ψ‖∞ ≤ 1 is equal to
‖ϕ‖L1(µ). Deduce that there is no decay of correlations which is uniform on ‖ψ‖∞.

Exercise 1.106. Let V1 := {ψ ∈ L2
0(µ), Λ(ψ) = 0}. Show that V1 is infinite

dimensional and that bounded functions in V1 are dense in V1 with respect to
the L2(µ)-topology. Using Theorem 1.82, show that the only eigenvalues of Λ are
0 and 1.

Exercise 1.107. Let ϕ be a d.s.h. function as in Corollary 1.88. Show that

‖ϕ+ · · ·+ϕ ◦ f n−1‖2
L2(µ)−nσ2 + γ = O(d−n),

where γ := 2∑n≥1 n〈µ ,ϕ(ϕ ◦ f n)〉 is a finite constant. Prove an analogous property
for ϕ Hölder continuous.

1.7 Entropy, Hyperbolicity and Dimension

There are various ways to describe the complexity of a dynamical system. A basic
measurement is the entropy which is closely related to the volume growth of the
images of subvarieties. We will compute the topological entropy and the metric en-
tropy of holomorphic endomorphisms of Pk. We will also estimate the Lyapounov
exponents with respect to the measure of maximal entropy and the Hausdorff
dimension of this measure.

We recall few notions. Let (X ,dist) be a compact metric space where dist is a
distance on X . Let g : X → X be a continuous map. We introduce the Bowen metric
associated to g. For a positive integer n, define the distance distn on X by

distn(x,y) := sup
0≤i≤n−1

dist(gi(x),gi(y)).

We have distn(x,y) > ε if the orbits x,g(x),g2(x), . . . of x and y,g(y),g2(y), . . . of y
are distant by more than ε at a time i less than n. In which case, we say that x,y are
(n,ε)-separated.

The topological entropy measures the rate of growth in function of time n, of
the number of orbits that can be distinguished at ε-resolution. In other words, it
measures the divergence of the orbits. More precisely, for K ⊂ X , not necessarily in-
variant, let N(K,n,ε) denote the maximal number of points in K which are pairwise
(n,ε)-separated. This number increases as ε decreases. The topological entropy of
g on K is

ht(g,K) := sup
ε>0

limsup
n→∞

1
n

logN(K,n,ε).
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The topological entropy of g is the entropy on X and is denoted by ht(g). The reader
can check that if g is an isometry, then ht(g) = 0. In complex dynamics, we often
have that for ε small enough, 1

n logN(X ,n,ε) converge to ht(g).
Let f be an endomorphism of algebraic degree d ≥ 2 of Pkas above. As we

have seen, the iterate f n of f has algebraic degree dn. If Z is an algebraic set
in Pk of codimension p then the degree of f−n(Z), counted with multiplicity, is
equal to d pn deg(Z) and the degree of f n(Z), counting with multiplicity, is equal to
d(k−p)n deg(Z). This is a consequence of Bézout’s theorem. Recall that the degree
of an algebraic set of codimension p in Pk is the number of points of intersection
with a generic projective subspace of dimension p.

The pull-back by f induces a linear map f ∗ : H p,p(Pk,C) → H p,p(Pk,C) which
is just the multiplication by d p. The constant d p is the dynamical degree of or-
der p of f . Dynamical degrees were considered by Gromov in [GR] where he
introduced a method to bound the topological entropy from above. We will see
that they measure the volume growth of the graphs. The degree of maximal order
dk is also called the topological degree. It is equal to the number of points in a
fiber counting with multiplicity. The push-forward by f n induces a linear map
f∗ : H p,p(Pk,C) → H p,p(Pk,C) which is the multiplication by dk−p. These op-
erations act continuously on positive closed currents and hence, the actions are
compatible with cohomology, see Appendix A.1.

We have the following result due to Gromov [GR] for the upper bound and to
Misiurewicz-Przytycky [MP] for the lower bound of the entropy.

Theorem 1.108. Let f be a holomorphic endomorphism of algebraic degree d on
Pk. Then the topological entropy ht( f ) of f is equal to k logd, i.e. to the logarithm
of the maximal dynamical degree.

The inequality ht( f ) ≥ k logd is a consequence of the following result which is
valid for arbitrary C 1 maps [MP].

Theorem 1.109 (Misuriewicz-Przytycki). Let X be a compact smooth orientable
manifold and g : X → X a C 1 map. Then

ht(g) ≥ log |deg(g)|.

Recall that the degree of g is defined as follows. Let Ω be a continuous form of
maximal degree on X such that

∫
X Ω "= 0. Then

deg(g) :=
∫

X g∗(Ω)∫
X Ω

·

The number is independent of the choice of Ω . When X is a complex manifold,
it is necessarily orientable and deg(g) is just the generic number of preimages of
a point, i.e. the topological degree of g. In our case, the topological degree of f is
equal to dk. So, ht( f ) ≥ k logd.

Instead of using Misuriewicz-Przytycki theorem, it is also possible to apply the
following important result due to Yomdin [YO].
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Theorem 1.110 (Yomdin). Let X be a compact smooth manifold and g : X → X a
smooth map. Let Y be a manifold in X smooth up to the boundary, then

limsup
n→∞

1
n

logvolume(gn(Y )) ≤ ht(g),

where the volume of gn(Y ) is counted with multiplicity.

In our situation, when Y = Pk, we have volume(gn(Y )) 4 dkn. Therefore,
ht( f ) ≥ k logd. We can also deduce this inequality from Theorem 1.118 and the
variational principle below.

End of the proof of Theorem 1.108. It remains to prove that ht( f ) ≤ k logd. Let
Γn denote the graph of ( f , f 2, . . . , f n−1) in (Pk)n, i.e. the set of points

(z, f (z), f 2(z), . . . , f n−1(z))

with z in Pk. This is a manifold of dimension k. Let Πi, i = 0, . . . ,n−1, denote the
projections from (Pk)n onto the factors Pk. We use on (Pk)n the metric and the dis-
tance associated to the Kähler form ωn := ∑Π ∗

i (ωFS) induced by the Fubini-Study
metrics ωFS on the factors Pk, see Appendix A.1. The following indicator lov( f )
was introduced by Gromov, it measures the growth rate of the volume of Γn,

lov( f ) := lim
n→∞

1
n

logvolume(Γn).

The rest of the proof splits into two parts. We first show that the previous limit exists
and is equal to k logd and then we prove the inequality ht( f ) ≤ lov( f ).

Using that Π0 : Γn → Pk is a bi-holomorphic map and that f i = Πi ◦ (Π0|Γn)
−1,

we obtain

k!volume(Γn) =
∫

Γn

ωk
n = ∑

0≤is≤n−1

∫

Γn

Π ∗
i1(ωFS)∧ . . .∧Π ∗

ik(ωFS)

= ∑
0≤is≤n−1

∫

Pk
( f i1 )∗(ωFS)∧ . . .∧ ( f ik )∗(ωFS).

The last sum contains nk integrals that we can compute cohomologically. The
above discussion on the action of f n on cohomology implies that the last integral
is equal to di1+···+ik ≤ dkn. So, the sum is bounded from above by nkdkn. When
i1 = · · ·= ik = n−1, we see that k!volume(Γn)≥ d(n−1)k. Therefore, the limit in the
definition of lov( f ) exists and is equal to k logd.

For the second step, we need the following classical estimate due to Lelong [LE],
see also Appendix A.2.

Lemma 1.111 (Lelong). Let A be an analytic set of pure dimension k in a ball Br
of radius r in CN. Assume that A contains the center of Br. Then the 2k-dimensional
volume of A is at least equal to the volume of a ball of radius r in Ck. In particular,
we have

volume(A) ≥ ckr2k,

where ck > 0 is a constant independent of N and of r.
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We prove now the inequality ht( f ) ≤ lov( f ). Consider an (n,ε)-separated
set F in Pk. For each point a ∈ F , let a(n) denote the corresponding point
(a, f (a), . . . , f n−1(a)) in Γn and Ba,n the ball of center a(n) and of radius ε/2 in
(Pk)n. Since F is (n,ε)-separated, these balls are disjoint. On the other hand,
by Lelong’s inequality, volume(Γn ∩Ba,n) ≥ c′kε2k, c′k > 0. Note that Lelong’s in-
equality is stated in the Euclidean metric. We can apply it using a fixed atlas of
Pk and the corresponding product atlas of (Pk)n, the distortion is bounded. So,
#F ≤ c′−1

k ε−2kvolume(Γn) and hence,

1
n

log#F ≤ 1
n

log(volume(Γn))+ O
(1

n

)
.

It follows that ht( f ) ≤ lov( f ) = k logd. #
We study the entropy of f on some subsets of Pk. The following result is due to

de Thélin and Dinh [DT3, D3].

Theorem 1.112. Let f be a holomorphic endomorphism of Pk of algebraic degree
d ≥ 2 and Jp its Julia set of order p, 1 ≤ p ≤ k. If K is a subset of Pk such that
K ∩Jp = ∅, then ht( f ,K) ≤ (p−1) logd.

Proof. The proof is based on Gromov’s idea as in Theorem 1.108 and on the speed
of convergence towards the Green current. Recall that Jp is the support of the
Green (p, p)-current T p of f . Fix an open neighbourhood W of K such that W !
Pk \ supp(T p). Using the notations in Theorem 1.108, we only have to prove that

lov( f ,W ) := limsup
n→∞

1
n

logvolume(Π−1
0 (W )∩Γn) ≤ (p−1) logd.

It is enough to show that volume(Π−1
0 (W )∩Γn) " nkd(p−1)n. As in Theorem

1.108, it is sufficient to check that for 0 ≤ ni ≤ n
∫

W
( f n1)∗(ωFS)∧ . . .∧ ( f nk )∗(ωFS) " d(p−1)n.

To this end, we prove by induction on (r,s), 0 ≤ r ≤ p and 0 ≤ s ≤ k− p + r, that

‖T p−r ∧ ( f n1)∗(ωFS)∧ . . .∧ ( f ns)∗(ωFS)‖Wr,s ≤ cr,sdn(r−1),

where Wr,s is a neighbourhood of W and cr,s ≥ 0 is a constant independent of n and
of ni. We obtain the result by taking r = p and s = k.

It is clear that the previous inequality holds when r = 0 and also when s = 0. In
both cases, we can take Wr,s = Pk \ supp(T p) and cr,s = 1. Assume the inequality
for (r−1,s−1) and (r,s−1). Let Wr,s be a neighbourhood of W strictly contained
in Wr−1,s−1 and Wr,s−1. Let χ ≥ 0 be a smooth cut-off function with support in
Wr−1,s−1 ∩Wr,s−1 which is equal to 1 on Wr,s. We only have to prove that

∫
T p−r ∧ ( f n1)∗(ωFS)∧ . . .∧ ( f ns)∗(ωFS)∧χωk−p+r−s

FS ≤ cr,sdn(r−1).
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If g is the Green function of f , we have

( f n1)∗(ωFS) = dn1T −ddc(g◦ f n1).

The above integral is equal to the sum of the following integrals

dn1

∫
T p−r+1 ∧ ( f n2)∗(ωFS)∧ . . .∧ ( f ns)∗(ωFS)∧χωk−p+r−s

FS

and

−
∫

T p−r ∧ddc(g◦ f n1)∧ ( f n2)∗(ωFS)∧ . . .∧ ( f ns)∗(ωFS)∧χωk−p+r−s
FS .

Using the case of (r−1,s−1) we can bound the first integral by cdn(r−1). Stokes’
theorem implies that the second integral is equal to

−
∫

T p−r ∧ ( f n2)∗(ωFS)∧ . . .∧ ( f ns)∗(ωFS)∧ (g◦ f n1)ddcχ ∧ωk−p+r−s
FS

which is bounded by

‖g‖∞‖χ‖C 2‖T p−r ∧ ( f n2)∗(ωFS)∧ . . .∧ ( f ns)∗(ωFS)‖Wr,s−1

since χ has support in Wr,s−1. We obtain the result using the (r,s−1) case. +,

The above result suggests a local indicator of volume growth. Define for a ∈ Pk

lov( f ,a) := inf
r>0

limsup
n→∞

1
n

logvolume(Π−1
0 (Br)∩Γn),

where Br is the ball of center a and of radius r. We can show that if a ∈ Jp \Jp+1
and if Br does not intersect Jp+1, the above limsup is in fact a limit and is equal
to p logd. One can also consider the graph of f n instead of Γn. The notion can be
extended to meromorphic maps and its sub-level sets are analogues of Julia sets.

We discuss now the metric entropy, i.e. the entropy of an invariant measure, a
notion due to Kolgomorov-Sinai. Let g : X → X be map on a space X which is mea-
surable with respect to a σ -algebra F . Let ν be an invariant probability measure
for g. Let ξ = {ξ1, . . . ,ξm} be a measurable partition of X . The entropy of ν with
respect to ξ is a measurement of the information we gain when we know that a
point x belongs to a member of the partition generated by g−i(ξ ) with 0 ≤ i ≤ n−1.

The information we gain when we know that a point x belongs to ξi is a positive
function I(x) which depends only on ν(ξi), i.e. I(x) = ϕ(ν(ξi)). The information
given by independent events should be additive. In other words, we have

ϕ(ν(ξi)ν(ξ j)) = ϕ(ν(ξi))+ϕ(ν(ξ j))

for i "= j. Hence, ϕ(t) = −c logt with c > 0. With the normalization c = 1, the
information function for the partition ξ is defined by

Iξ (x) :=∑− logν(ξi)1ξi
(x).
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The entropy of ξ is the average of Iξ :

H(ξ ) :=
∫

Iξ (x)dν(x) = −∑ν(ξi) logν(ξi).

It is useful to observe that the function t .→ −t logt is concave on ]0,1] and has the
maximal value e−1 at e−1.

Consider now the information obtained if we measure the position of the orbit
x,g(x), . . . ,gn−1(x) relatively to ξ . By definition, this is the measure of the en-
tropy of the partition generated by ξ ,g−1(ξ ), . . . ,g−n+1(ξ ), which we denote by∨n−1

i=0 g−i(ξ ). The elements of this partition are ξi1 ∩ g−1(ξi2)∩ . . .∩ g−n+1(ξin−1).
It can be shown [W] that

hν(g,ξ ) := lim
n→∞

1
n

H

(
n−1∨

i=0

g−i(ξ )

)

exists. The entropy of the measure ν is defined as

hν(g) := sup
ξ

hν(g,ξ ).

Two measurable dynamical systems g on (X ,F ,ν) and g′ on (X ′,F ′,ν ′) are
said to be measurably conjugate if there is a measurable invertible map π : X → X ′

such that π ◦ g = g′ ◦ π and π∗(ν) = ν ′. In that case, we have hν(g) = hν ′(g′).
So, entropy is a conjugacy invariant. Note also that hν(gn) = nhν(g) and if g is
invertible, hν(gn) = |n|hν(g) for n ∈ Z. Moreover, if g is a continuous map of a
compact metric space, then ν .→ hν(g) is an affine function on the convex set of
g-invariant probability measures [KH, p.164].

We say that a measurable partition ξ is a generator if up to sets of measure
zero, F is the smallest σ -algebra containing ξ which is invariant under gn,n ∈ Z.
A finite partition ξ is called a strong generator for a measure preserving dynam-
ical system (X ,F ,ν,g) as above, if up to sets of zero ν-measure, F generated
by

⋃∞
n=0 g−n(ξ ). The following result of Kolmogorov-Sinai is useful in order to

compute the entropy [W].

Theorem 1.113 (Kolmogorov-Sinai). Let ξ be a strong generator for the
dynamical system (X ,F ,ν,g) as above. Then

hν(g) = hν(g,ξ ).

We recall another useful theorem due to Brin-Katok [BK] which is valid for
continuous maps g : X → X on a compact metric space. Let Bg

n(x,δ ) denote the
ball of center x and of radius δ with respect to the Bowen distance distn. We call
Bg

n(x,δ ) the Bowen (n,δ )-ball. Define local entropies of an invariant probability
measure ν by

hν(g,x) := sup
δ>0

limsup
n→∞

−1
n

logν(Bg
n(x,δ ))
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and
h−ν (g,x) := sup

δ>0
liminf

n→∞
−1

n
logν(Bg

n(x,δ )).

Theorem 1.114 (Brin-Katok). Let g : X → X be a continuous map on a compact
metric space. Let ν be an invariant probability measure of finite entropy. Then,
hν(g,x) = h−ν (g,x) and hν(g,g(x)) = hν(g,x) for ν-almost every x. Moreover,
〈ν,hν(g, ·)〉 is equal to the entropy hν(g) of ν . In particular, if ν is ergodic, we have
hν(g,x) = hν(g) ν-almost everywhere.

One can roughly say that ν(Bg
n(x,δ )) goes to zero at the exponential rate e−hν(g)

for δ small. We can deduce from the above theorem that if Y ⊂ X is a Borel set with
ν(Y ) > 0, then ht(g,Y ) ≥ hν(g). The comparison with the topological entropy is
given by the variational principle [KH, W].

Theorem 1.115 (variational principle). Let g : X → X be a continuous map on a
compact metric space. Then

suphν(g) = ht(g),

where the supremum is taken over the invariant probability measures ν .

Newhouse proved in [NE] that if g is a smooth map on a smooth compact man-
ifold, there is always a measure ν of maximal entropy, i.e. hν(g) = ht(g). One of
the natural question in dynamics is to find the measures which maximize entropy.
Their supports are in some sense the most chaotic parts of the system. The notion
of Jacobian of a measure is useful in order to estimate the metric entropy.

Let g : X → X be a measurable map as above which preserves a probability
measure ν . Assume there is a countable partition (ξi) of X , such that the map g
is injective on each ξi. The Jacobian Jν(g) of g with respect to ν is defined as
the Radon-Nikodym derivative of g∗(ν) with respect to ν on each ξi. Observe that
g∗(ν) is well-defined on ξi since g restricted to ξi is injective. We have the following
theorem due to Parry [P].

Theorem 1.116 (Parry). Let g, ν be as above and Jν(g) the Jacobian of g with
respect to ν . Then

hν(g) ≥
∫

logJν(g)dν.

We now discuss the metric entropy of holomorphic maps on Pk. The following
result is a consequence of the variational principle and Theorems 1.108 and 1.112.

Corollary 1.117. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Let ν
be an invariant probability measure. Then hν( f ) ≤ k logd. If the support of ν does
not intersect the Julia set Jp of order p, then hν( f ) ≤ (p− 1) logd. In particular,
if ν is ergodic and hν( f ) > (p−1) logd, then ν is supported on Jp.

In the following result, the value of the metric entropy was obtained in [BD2,S3]
and the uniqueness was obtained by Briend-Duval in [BD2]. The case of dimension
1 is due to Freire-Lopès-Mañé [FL] and Lyubich [LY].
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Theorem 1.118. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk. Then
the equilibrium measure µ of f is the unique invariant measure of maximal entropy
k logd.

Proof. We have seen in Corollary 1.117 that hµ( f ) ≤ k logd. Moreover, µ has no
mass on analytic sets, in particular on the critical set of f . Therefore, if f is injective
on a Borel set K, then f∗(1K) = 1 f (K) and the total invariance of µ implies that
µ( f (K)) = dkµ(K). So, µ is a measure of constant Jacobian dk. It follows from
Theorem 1.116 that its entropy is at least equal to k logd. So, hµ( f ) = k logd.

Assume now that there is another invariant probability measure ν of entropy
k logd. We are looking for a contradiction. Since entropy is an affine function on ν ,
we can assume that ν is ergodic. This measure has no mass on proper analytic
sets of Pk since otherwise its entropy is at most equal to (k−1) logd, see Exercise
1.122 below. By Theorem 1.45, ν is not totally invariant, so it is not of constant
Jacobian. Since µ has no mass on critical values of f , there is a simply connected
open set U , not necessarily connected, such that f−1(U) is a union U1 ∪ . . .∪Udk of
disjoint open sets such that f : Ui →U is bi-holomorphic. One can choose U and Ui
such that the Ui do not have the same ν-measure, otherwise µ = ν . So, we can
assume that ν(U1) > d−k. This is possible since two ergodic measures are mutually
singular. Here, it is necessarily to chose U so that µ(Pk \U) is small.

Choose an open set W ! U1 such that ν(W ) > σ for some constant σ > d−k.
Let m be a fixed integer and let Y be the set of points x such that for every n ≥ m,
there are at least nσ points f i(x) with 0 ≤ i ≤ n−1 which belong to W . If m is large
enough, Birkhoff’s theorem implies that Y has positive ν-measure. By Brin-Katok’s
theorem 1.114, we have ht( f ,Y ) ≥ hν( f ) = k logd.

Consider the open sets Uα := Uα0 × ·· ·×Uαn−1 in (Pk)n such that there are at
least nσ indices αi equal to 1. A straighforward computation shows that the number
of such open sets is ≤ dkρn for some constant ρ < 1. Let Vn denote the union of
these Uα . Using the same arguments as in Theorem 1.108, we get that

k logd ≤ ht( f ,Y ) ≤ lim
n→∞

1
n

logvolume(Γn ∩Vn)

and

k!volume(Γn ∩Vn) = ∑
0≤is≤n−1

∑
α

∫

Γn∩Uα
Π ∗

i1(ωFS)∧ . . .∧Π ∗
ik(ωFS).

Fix a constant λ such that ρ < λ < 1. Let I denote the set of multi-indices
i = (i1, . . . , ik) in {0, . . . ,n− 1}k such that is ≥ nλ for every s. We distinguish two
cases where i "∈ I or i ∈ I. In the first case, we have

∑
α

∫

Γn∩Uα
Π ∗

i1(ωFS)∧ . . .∧Π ∗
ik(ωFS) ≤

∫

Γn

Π ∗
i1(ωFS)∧ . . .∧Π ∗

ik(ωFS)

=
∫

Pk
( f i1 )∗(ωFS)∧ . . .∧ ( f ik )∗(ωFS)

= di1+···+ik ≤ d(k−1+λ )n,

since i1 + · · ·+ ik ≤ (k−1 +λ )n.
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Consider the second case with multi-indices i ∈ I. Let q denote the integer part
of λn and Wα the projection of Γn ∩Uα on Pk by Π0. Observe that the choice of the
open sets Ui implies that f q is injective on Wα . Therefore,

∑
α

∫

Γn∩Uα
Π ∗

i1(ωFS)∧ . . .∧Π ∗
ik(ωFS)

≤∑
α

∫

Wα
( f i1)∗(ωFS)∧ . . .∧ ( f ik )∗(ωFS)

=∑
α

∫

Wα
( f q)∗

[
( f i1−q)∗(ωFS)∧ . . .∧ ( f ik−q)∗(ωFS)

]

≤∑
α

∫

Pk
( f i1−q)∗(ωFS)∧ . . .∧ ( f ik−q)∗(ωFS).

Recall that the number of open sets Uα is bounded by dkρn. So, the last sum is
bounded by

dkρnd(i1−q)+···+(ik−q) ≤ dkρndk(n−q) " dk(1+ρ−λ )n.

Finally, since the number of multi-indices i is less than nk, we deduce from the
above estimates that

k!volume(Γn ∩Vn) " nkd(k−1+λ )n + nkdk(1+ρ−λ )n.

This contradicts the above bound from below of volume(Γn ∩Vn). +,

The remaining part of this paragraph deals with Lyapounov exponents associated
to the measure µ and their relations with the Hausdorff dimension of µ . Results
in this direction give some information about the rough geometrical behaviour of
the dynamical system on the most chaotic locus. An abstract theory was developed
by Oseledec and Pesin, see e.g. [KH]. However, it is often difficult to show that
a given dynamical system has non-vanishing Lyapounov exponents. In complex
dynamics as we will see, the use of holomorphicity makes the goal reachable. We
first introduce few notions.

Let A be a linear endomorphism of Rk. We can write Rk as the direct sum ⊕Ei
of invariant subspaces on which all the complex eigenvalues of A have the same
modulus. This decomposition of Rk describes clearly the geometrical behaviour of
the dynamical system associated to A. An important part in the dynamical study
with respect to an invariant measure is to describe geometrical aspects following
the directional dilation or contraction indicators.

Consider a smooth dynamical system g : X → X and an invariant ergodic prob-
ability measure ν . The map g induces a linear map from the tangent space at x to
the tangent space at g(x). This linear map is given by a square matrix when we fix
local coordinates near x and g(x). Then, we obtain a function on X with values in
GL(R,k) where k denotes the real dimension of X . We will study the sequence of
such functions associated to the sequence of iterates (gn) of g.
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Consider a more abstract setting. Let g : X → X be a measurable map and ν
an invariant probability measure. Let A : X → GL(R,k) be a measurable function.
Define for n ≥ 0

An(x) := A(gn−1(x)) . . .A(x).

These functions satisfy the identity

An+m(x) = An(gm(x))Am(x)

for n,m ≥ 0. We say that the sequence (An) is the multiplicative cocycle over X
generated by A.

The following Oseledec’s multiplicative ergodic theorem is related to the
Kingman’s sub-multiplicative ergodic theorem [KH, W]. It can be seen as a gener-
alization of the above property of a single square matrix A.

Theorem 1.119 (Oseledec). Let g : X → X, ν and the cocycle (An) be as above. As-
sume that ν is ergodic and that log+ ‖A±1(x)‖ are in L1(ν). Then there is an integer
m, real numbers χ1 < · · · < χm, and for ν-almost every x, a unique decomposition
of Rk into a direct sum of linear subspaces

Rk =
m⊕

i=1

Ei(x)

such that

1. The dimension of Ei(x) does not depend on x.
2. The decomposition is invariant, that is, A(x) sends Ei(x) to Ei(g(x)).
3. We have locally uniformly on vectors v in Ei(x)\ {0}

lim
n→∞

1
n

log‖An(x) · v‖ = χi.

4. For S ⊂ {1, . . . ,m}, define ES(x) :=⊕i∈SEi(x). If S,S′ are disjoint, then the angle
between ES(x) and ES′(x) is a tempered function, that is,

lim
n→∞

1
n

logsin
∣∣∠
(
ES(gn(x)),ES′(gn(x))

)∣∣= 0.

The result is still valid for non-ergodic systems but the constants m and χi should
be replaced with invariant functions. If g is invertible, the previous decomposition
is the same for g−1 where the exponents χi are replaced with −χi. The result is also
valid in the complex setting where we replace R with C and GL(R,k) by GL(C,k).
In this case, the subspaces Ei(x) are complex.

We now come back to a smooth dynamical system g : X → X on a compact
manifold. We assume that the Jacobian J(g) of g associated to a smooth volume
form satisfies 〈ν, logJ(g)〉 > −∞. Under this hypothesis, we can apply Oseledec’s
theorem to the cocycle induced by g on the tangent bundle of X ; this allows to
decompose, ν-almost everywhere, the tangent bundle into invariant sub-bundles.
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The corresponding constants χi are called Lyapounov exponents of g with respect
to ν . The dimension of Ei is the multiplicity of χi. These notions do not depend on
the choice of local coordinates on X . The Lyapounov exponents of gn are equal to
nχi. We say that the measure ν is hyperbolic if no Lyapounov exponent is zero. It
is not difficult to deduce from the Oseledec’s theorem that the sum of Lyapounov
exponents of ν is equal to 〈ν, logJ(g)〉. The reader will find in [KH] a theorem due
to Pesin, called the ε-reduction theorem, which generalizes Theorem 1.119. It gives
some coordinate changes on Rk which allow to write A(x) in the form of a diagonal
block matrix with explicit estimates on the distortion.

The following result due to Briend-Duval [BD1], shows that endomorphisms
in Pk are expansive with respect to the equilibrium measures. We give here a new
proof using Proposition 1.51. Note that there are k Lyapounov exponents counted
with multiplicity. If we consider these endomorphism as real maps, we should count
twice the Lyapounov exponents.

Theorem 1.120. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2
of Pk. Then the equilibrium measure µ of f is hyperbolic. More precisely, its
Lyapounov exponents are larger or equal to 1

2 logd.

Proof. Since the measure µ is PB, quasi-p.s.h. functions are µ-integrable. It is not
difficult to check that if J( f ) is the Jacobian of f with respect to the Fubini-Study
metric, then logJ( f ) is a quasi-p.s.h. function. Therefore, we can apply Oseledec’s
theorem 1.119. We deduce from this result that the smallest Lyapounov exponent of
µ is equal to

χ := lim
n→∞

−1
n

log‖D f n(x)−1‖

for µ-almost every x. By Proposition 1.51, there is a ball B of positive µ measure
which admits at least 1

2 dkn inverse branches gi : B → Ui for f n with Ui of diameter
≤ d−n/2. If we slightly reduce the ball B, we can assume that ‖Dgi‖ ≤ Ad−n/2 for
some constant A > 0. This is a simple consequence of Cauchy’s formula. It follows
that ‖(D f n)−1‖ ≤ Ad−n/2 on Ui. The union Vn of the Ui is of measure at least equal
to 1

2 µ(B). Therefore, by Fatou’s lemma,

1
2

µ(B) ≤ limsup
n→∞

〈µ ,1Vn〉 ≤ 〈µ , limsup1Vn〉 = 〈µ ,1limsupVn〉.

Hence, there is a set K := limsupVn of positive measure such that if x is in K, we
have ‖D f n(x)−1‖ ≤ Ad−n/2 for infinitely many of n. The result follows. +,

Note that in a recent work [DT2], de Thélin proved that if ν is an invariant
measure of entropy strictly larger than (k− 1) logd such that the logarithm of the
Jacobian is integrable, then the associated Lyapounov exponents are strictly posi-
tive. He also obtained for these exponents some explicit estimates from below. His
method is more powerful and is valid in a very general setting.

The Hausdorff dimension dimH(ν) of a probability measure ν on Pk is the
infimum of the numbers α ≥ 0 such that there is a Borel set K of Hausdorff
dimension α of full measure, i.e. ν(K) = 1. Hausdorff dimension says how the
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measure fills out its support. The following result was obtained by Binder-DeMarco
[BI] and Dinh-Dupont [DD]. The fact that µ has positive dimension has been proved
in [S3]; indeed, a lower bound is given in terms of the Hölder continuity exponent
of the Green function g.

Theorem 1.121. Let f be an endomorphism of algebraic degree d ≥ 2 of Pk and
µ its equilibrium measure. Let χ1, . . . ,χk denote the Lyapounov exponents of µ
ordered by χ1 ≥ ·· · ≥ χk and Σ their sum. Then

k logd
χ1

≤ dimH(µ) ≤ 2k− 2Σ − k logd
χ1

·

The proof is quite technical. It is based on a delicate study of the inverse branches
of balls along a generic negative orbit. We will not give the proof here. A better
estimate in dimension 2, probably the sharp one, was recently obtained by Dupont.
Indeed, Binder-DeMarco conjecture that the Hausdorff dimension of µ satisfies

dimH(µ) =
logd
χ1

+ · · ·+ logd
χk

·

Dupont gives in [DP3] results in this direction.

Exercise 1.122. Let X be an analytic subvariety of pure dimension p in Pk. Let f
be an endomorphism of algebraic degree d ≥ 2 of Pk. Show that ht( f ,X) ≤ p logd.

Exercise 1.123. Let f : X → X be a smooth map and K an invariant compact subset
of X . Assume that K is hyperbolic, i.e. there is a continuously varying decomposi-
tion TX|K = E ⊕F of the tangent bundle of X restricted to K, into the sum of two
invariant vector bundles such that ‖D f‖ < 1 on E and ‖(D f )−1‖ < 1 on F for some
smooth metric near K. Show that f admits a hyperbolic ergodic invariant measure
supported on K.

Exercise 1.124. Let f : X → X be a holomorphic map on a compact complex mani-
fold and let ν be an ergodic invariant measure. Show that in Theorem 1.119 applied
to the action of f on the complex tangent bundle, the spaces Ei(x) are complex.

Exercise 1.125. Let α > 0 be a constant. Show that there is an endomorphism f of
Pk such that the Hausdorff dimension of the equilibrium measure of f is smaller
than α . Show that there is an endomorphism f such that its Green function g is not
α-Hölder continuous.

Notes. We do not give here results on local dynamics near a fixed point. If this point is non-critical
attractive or repelling, a theorem of Poincaré says that the map is locally conjugated to a polyno-
mial map [ST]. Maps which are tangent to the identity or are semi-attractive at a fixed point, were
studied by Abate and Hakim [A,H1,H2,H3], see also Abate, Bracci and Tovena [ABT]. Dynamics
near a super-attractive fixed point in dimension k = 2 was studied by Favre-Jonsson using a theory
of valuations in [FJ1].

The study of the dynamical system outside the support of the equilibrium measure is not yet
developped. Some results on attracting sets, attracting currents, etc. were obtained by de Thélin,
Dinh, Fornæss, Jonsson, Sibony, Weickert [DT1,DT2,D3,FS6,FW,JW], see also Bonifant, Dabija,
Milnor and Taflin [BO, T], Mihailescu and Urbański [MI, MIH].
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In dimension 1, Fatou and Julia considered their theory as an investigation to solve some
functional equations. In particular, they found all the commuting pairs of polynomials [F, JU], see
also Ritt [R] and Eremenko [E] for the case of rational maps. Commuting endomorphisms of Pk

were studied by the authors in [DS0]. A large family of solutions are Lattès maps. We refer to
Berteloot, Dinh, Dupont, Loeb, Molino [BR, BDM, BL, D4, DP1] for a study of this class of maps,
see also Milnor [MIL] for the dimension 1 case.

We do not consider here bifurcation problems for families of maps and refer to Bassanelli-
Berteloot [BB] and Pham [PH] for this subject. Some results will be presented in the next chapter.

In [Z], Zhang considers some links between complex dynamics and arithmetic questions. He is
interested in polarized holomorphic maps on Kähler varieties, i.e. maps which multiply a Kähler
class by an integer. If the Kähler class is integral, the variety can be embedded into a projective
space Pk and the maps extend to endomorphisms of Pk. So, several results stated above can be
directely applied to that situation. In general, most of the results for endomorphisms in Pk can
be easily extended to general polarized maps. In the unpublished preprint [DS14], the authors
considered the situation of smooth compact Kähler manifolds. We recall here the main result.

Let (X,ω) be an arbitrary compact Kähler manifold of dimension k. Let f be a holomorphic
endomorphism of X . We assume that f is open. The spectral radius of f ∗ acting on H p,p(X,C) is
called the dynamical degree of order p of f . It can be computed by the formula

dp := lim
n→∞

(∫

X
( f n)∗(ω p)∧ωk−p

)1/n
.

The last degree dk is the topological degree of f , i.e. equal to the number of points in a generic
fiber of f . We also denote it by dt .

Assume that dt > dp for 1 ≤ p ≤ k − 1. Then, there is a maximal proper analytic subset E
of X which is totally invariant by f , i.e. f −1(E ) = f (E ) = E . If δa is a Dirac mass at a "∈ E ,
then d−n

t ( f n)∗(δa) converge to a probability measure µ , which does not depend on a. This is the
equilibrium measure of f . It satisfies f ∗(µ) = dt µ and f∗(µ) = µ . If J is the Jacobian of f with
respect to ωk then 〈µ , logJ〉 ≥ logdt . The measure µ is K-mixing and hyperbolic with Lyapounov
exponents larger or equal to 1

2 log(dt/dk−1). Moreover, there are sets Pn of repelling periodic
points of order n, on supp(µ) such that the probability measures equidistributed on Pn converge to
µ , as n goes to infinity. If the periodic points of period n are isolated for every n, an estimate on the
norm of ( f n)∗ on H p,q(X ,C) obtained in [D22], implies that the number of these periodic points is
dn

t +o(dn
t ). Therefore, periodic points are equidistributed with respect to µ . We can prove without

difficulty that µ is the unique invariant measure of maximal entropy logdt and is moderate. Then,
we can extend the stochastic properties obtained for Pk to this more general setting.

When f is polarized by the cohomology class [ω] of a Kähler form ω , there is a constant λ ≥ 1
such that f ∗[ω] = λ [ω]. It is not difficult to check that dp = λ p. The above results can be applied
for such a map when λ > 1. In which case, periodic points of a given period are isolated. Note
also that Theorem 1.108 can be extended to this case.

2 Polynomial-like Maps in Higher Dimension

In this section we consider a large family of holomorphic maps in a semi-local
setting: the polynomial-like maps. They can appear as a basic block in the study
of some meromorphic maps on compact manifolds. The main reference for this
section is our article [DS1] where the ddc-method in dynamics was introduced.
Endomorphisms of Pk can be considered as a special case of polynomial-like maps.
However, in general, there is no Green (1,1)-current for such maps. The notion of
dynamical degrees for polynomial-like maps replaces the algebraic degree. Under
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natural assumptions on dynamical degrees, we prove that the measure of maximal
entropy is non-uniformly hyperbolic and we study its sharp ergodic properties.

2.1 Examples, Degrees and Entropy

Let V be a convex open set in Ck and U ! V an open subset. A proper holomorphic
map f : U → V is called a polynomial-like map. Recall that a map f : U → V is
proper if f−1(K) ! U for every compact subset K of V . The map f sends the bound-
ary of U to the boundary of V ; more precisely, the points near ∂U are sent to points
near ∂V . So, polynomial-like maps are somehow expansive in all directions, but the
expansion is in the geometrical sense. In general, they may have a non-empty crit-
ical set. A polynomial-like mapping f : U →V defines a ramified covering over V .
The degree dt of this covering is also called the topological degree. It is equal to the
number of points in a generic fiber, or in any fiber if we count the multiplicity.

Polynomial-like maps are characterized by the property that their graph Γ in
U ×V is in fact a submanifold of V ×V , that is, Γ is closed in V ×V . So, any small
perturbation of f is polynomial-like of the same topological degree dt , provided that
we reduce slightly the open set V . We will construct large families of polynomial-
like maps. In dimension one, it was proved by Douady-Hubbard [DH] that such
a map is conjugated to a polynomial via a Hölder continuous homeomorphism.
Many dynamical properties can be deduced from the corresponding properties of
polynomials. In higher dimension, the analogous statement is not valid. Some new
dynamical phenomena appear for polynomial-like mappings, that do not exist for
polynomial maps. We use here an approach completely different from the one di-
mensional case, where the basic tool is the Riemann measurable mapping theorem.

Let f : Ck → Ck be a holomorphic map such that the hyperplane at infinity is
attracting in the sense that ‖ f (z)‖ ≥ A‖z‖ for some constant A > 1 and for ‖z‖ large
enough. If V is a large ball centered at 0, then U := f−1(V ) is strictly contained
in V . Therefore, f : U → V is a polynomial-like map. Small transcendental pertur-
bations of f , as we mentioned above, give a large family of polynomial-like maps.
Observe also that the dynamical study of holomorphic endomorphisms on Pk can
be reduced to polynomial-like maps by lifting to a large ball in Ck+1. We give now
other explicit examples.

Example 2.1. Let f = ( f1, . . . , fk) be a polynomial map in Ck, with deg fi = di ≥ 2.
Using a conjugacy with a permutation of coordinates, we can assume that
d1 ≥ ·· · ≥ dk. Let f +

i denote the homogeneous polynomial of highest degree in
fi. If { f +

1 = · · · = f +
k = 0} is reduced to {0}, then f is polynomial-like in any large

ball of center 0. Indeed, define d := d1 . . .dk and π(z1, . . . ,zk) := (zd/d1
1 , . . . ,zd/dk

k ).
Then, π ◦ f is a polynomial map of algebraic degree d which extends holomor-
phically at infinity to an endomorphism of Pk. Therefore, ‖π ◦ f (z)‖ $ ‖z‖d for
‖z‖ large enough. The estimate ‖ f (z)‖ $ ‖z‖dk near infinity follows easily. If we
consider the extension of f to Pk, we obtain in general a meromorphic map which
is not holomorphic. Small pertubations fε of f may have indeterminacy points in
Ck and a priori, indeterminacy points of the sequence ( f n

ε )n≥1 may be dense in Pk.
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Example 2.2. The map (z1,z2) .→ (z2
1 + az2,z1), a "= 0, is not polynomial-like. It is

invertible and the point [0 : 0 : 1] at infinity, in homogeneous coordinates [z0 : z1 : z2],
is an attractive fixed point for f−1. Hence, the set K of points z ∈ C2 with bounded
orbit, clusters at [0 : 0 : 1].

The map f (z1,z2) := (zd
2 ,2z1), d ≥ 2, is polynomial-like in any large ball of

center 0. Considered as a map on P2, it is only meromorphic with an indeter-
minacy point [0 : 1 : 0]. On a fixed large ball of center 0, the perturbed maps
fε := (zd

2 + εez1 ,2z1 + εez2) are polynomial-like, in an appropriate open set U .

Consider a general polynomial-like map f : U → V of topological degree
dt ≥ 2. We introduce several growth indicators of the action of f on forms or
currents. Define f n := f ◦ · · · ◦ f , n times, the iterate of order n of f . This map
is only defined on U−n := f−n(V ). The sequence (U−n) is decreasing: we have
U−n−1 = f−1(U−n) ! U−n. Their intersection K := ∩n≥0U−n is a non-empty com-
pact set that we call the filled Julia set of f . The filled Julia set is totally invariant:
we have f−1(K ) = K which implies that f (K ) = K . Only for x in K , the
infinite orbit x, f (x), f 2(x), . . . is well-defined. The preimages f−n(x) by f n are
defined for every n ≥ 0 and every x in V .

Let ω := ddc‖z‖2 denote the standard Kähler form on Ck. Recall that the mass
of a positive (p, p)-current S on a Borel set K is given by ‖S‖K :=

∫
K S∧ωk−p.

Define the dynamical degree of order p of f , for 0 ≤ p ≤ k, by

dp( f ) := limsup
n→∞

‖( f n)∗(ωk−p)‖1/n
W = limsup

n→∞
‖( f n)∗(ω p)‖1/n

f−n(W),

where W ! V is a neighbourhood of K . For simplicity, when there is no confusion,
this degree is also denoted by dp. We have the following lemma.

Lemma 2.3. The degrees dp do not depend on the choice of W. Moreover, we have
d0 ≤ 1, dk = dt and the dynamical degree of order p of f m is equal to dm

p .

Proof. Let W ′ ⊂ W be another neighbourhood of K . For the first assertion, we
only have to show that

limsup
n→∞

‖( f n)∗(ω p)‖1/n
f−n(W ) ≤ limsup

n→∞
‖( f n)∗(ω p)‖1/n

f−n(W ′).

By definition of K , there is an integer N such that f−N(V ) ! W ′. Since ( f N)∗(ω p)
is smooth on f−N(V ), we can find a constant A > 0 such that ( f N)∗(ω p) ≤ Aω p on
f−N(W ). We have

limsup
n→∞

‖( f n)∗(ω p)‖1/n
f−n(W) = limsup

n→∞
‖( f n−N)∗

(
( f N)∗(ω p)

)
‖1/n

f−n+N( f−N(W))

≤ limsup
n→∞

‖A( f n−N)∗(ω p)‖1/n
f−n+N(W ′)

= limsup
n→∞

‖( f n)∗(ω p)‖1/n
f−n(W ′).

This proves the first assertion.
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It is clear from the definition that d0 ≤ 1. Since f has topological degree dt the
pull-back of a positive measure multiplies the mass by dt . Therefore, dk = dt . For
the last assertion of the lemma, we only have to check that

limsup
n→∞

‖( f n)∗(ω p)‖1/n
f−n(W ) ≤ limsup

s→∞
‖( f ms)∗(ω p)‖1/ms

f−ms(W ).

To this end, we proceed as above. Write n = ms + r with 0 ≤ r ≤ m − 1. We
obtain the result using that ( f r)∗(ω p) ≤ Aω p on a fixed neighbourhood of K for
0 ≤ r ≤ m−1. +,

The main result of this paragraph is the following formula for the entropy.

Theorem 2.4. Let f : U →V be a polynomial-like map of topological degree dt ≥ 2.
Let K be the filled Julia set of f . Then, the topological entropy of f on K is equal
to ht( f ,K ) = logdt . Moreover, all the dynamical degrees dp of f are smaller or
equal to dt .

We need the following lemma where we use standard metrics on Euclidean
spaces.

Lemma 2.5. Let V be an open set of Ck, U a relatively compact subset of V and L
a compact subset of C. Let π denote the canonical projection from Cm ×V onto V .
SupposeΓ is an analytic subset of pure dimension k of Cm×V contained in Lm×V.
Assume also that π : Γ → V defines a ramified covering of degree dΓ . Then, there
exist constants c > 0, s > 0, independent of Γ and m, such that

volume(Γ ∩Cm ×U) ≤ cmsdΓ .

Proof. Since the problem is local on V , we can assume that V is the unit ball of
Ck and U is the closed ball of center 0 and of radius 1/2. We can also assume
that L is the closed unit disc in C. Denote by x = (x1, . . . ,xm) and y = (y1, . . . ,yk)
the coordinates on Cm and on Ck. Let ε be a k ×m matrix whose entries have
modulus bounded by 1/8mk. Define πε(x,y) := y+εx, Γε :=Γ ∩{‖πε‖< 3/4} and
Γ ∗ := Γ ∩ (Lm ×U).

We first show that Γ ∗ ⊂ Γε . Consider a point (x,y) ∈ Γ ∗. We have |xi| < 1 and
‖y‖ ≤ 1/2. Hence,

‖πε(x,y)‖ ≤ ‖y‖+‖εx‖< 3/4.

This implies that (x,y) ∈ Γε .
Now, we prove that for every a ∈Ck with ‖a‖< 3/4, we have #π−1

ε (a)∩Γ = dΓ ,
where we count the multiplicities of points. To this end, we show that #π−1

tε (a)∩Γ
does not depend on t ∈ [0,1]. So, it is sufficient to check that the union of the sets
π−1

tε (a)∩Γ is contained in the compact subset Γ ∩{‖π‖≤ 7/8} of Γ . Let (x,y) ∈Γ
and t ∈ [0,1] such that πtε(x,y) = a. We have

3/4 > ‖a‖ = ‖πtε(x,y)‖ ≥ ‖y‖− t‖εx‖.

It follows that ‖y‖ < 7/8 and hence (x,y) ∈ Γ ∩{‖π‖ ≤ 7/8}.
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Let B denote the ball of center 0 and of radius 3/4 in Ck. We have for some
constant c′ > 0

∫

Γ ∗
π∗ε (ωk) ≤

∫

Γε
π∗ε (ωk) = dΓ

∫

B
ωk = c′dΓ .

Let Θ := ddc‖x‖2 + ddc‖y‖2 be the standard Kähler (1,1)-form on Cm ×Ck. We
have

volume(Γ ∩Cm ×U) =
∫

Γ∩Cm×U
Θ k.

It suffices to boundΘ by a linear combination of 2m+ 1 forms of type π∗ε (ω) with
coefficients of order 4 m2 and then to use the previous estimates. Recall that ω =
ddc‖y‖2. So, we only have to bound

√
−1dxi∧dxi by a combination of (1,1)-forms

of type π∗ε (ω). Consider δ := 1/8mk and πε(x,y) := (y1 + δxi,y2, . . . ,yk). We have

√
−1dxi ∧dxi =

4
√
−1

3δ 2

[
3dy1 ∧dy1 + d(y1 + δxi)∧d(y1 + δxi)

−d(2y1 + δxi/2)∧d(2y1 + δxi/2)
]

≤ 4
√
−1

3δ 2

[
3dy1 ∧dy1 + d(y1 + δxi)∧d(y1 + δxi)

]

The last form can be bounded by a combination of π∗0 (ω) and π∗ε (ω). This com-
pletes the proof. +,
Proof of Theorem 2.4. We prove that ht( f ,K ) ≤ logdt . We will prove in Para-
graphs 2.2 and 2.4 that f admits a totally invariant measure of maximal entropy
logdt with support in the boundary of K . The variational principle then implies
that ht( f ,K ) = ht( f ,∂K ) = logdt . We can also conclude using Misiurewicz-
Przytycki’s theorem 1.109 or Yomdin’s theorem 1.110 which can be extended to
this case.

Let Γn denote the graph of ( f , . . . , f n−1) in V n ⊂ (Ck)n−1 × V . Let π :
(Ck)n−1 ×V → V be the canonical projection. Since f : U → V is polynomial-
like, it is easy to see that Γn ⊂ Un−1 ×V and that π : Γn → V defines a ramified
covering of degree dn

t . As in Theorem 1.108, we have

ht( f ,K ) ≤ lov( f ) := limsup
n→∞

1
n

logvolume(Γn ∩π−1(U)).

But, it follows from Lemma 2.5 that

volume(Γn ∩π−1(U)) ≤ c(kn)sdn
t .

Hence, lov( f ) ≤ logdt . This implies the inequality ht( f ,K ) ≤ logdt . Note that the
limit in the definition of lov( f ) exists and we have lov( f ) = logdt . Indeed, since Γn
is a covering of degree dn

t over V , we always have

volume(Γn ∩π−1(U)) ≥ dn
t volume(U).
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We show that dp ≤ dt . Let Πi, 0 ≤ i ≤ n−1, denote the projection of V n onto its
factors. We have

volume(Γn ∩π−1(U)) = ∑
0≤is≤n−1

∫

Γn∩π−1(U)
Π ∗

i1(ω)∧ . . .∧Π ∗
ik(ω).

The last sum contains the term
∫

Γn∩π−1(U)
Π ∗

0 (ωk−p)∧Π ∗
n−1(ω p) =

∫

f−n+1(U)
ωk−p ∧ ( f n−1)∗(ω p).

We deduce from the estimate on volume(Γn ∩π−1(U)) and from the definition of
dp that dp ≤ lov( f ) = dt . #

We introduce now others useful dynamical degrees. We call dynamical ∗-degree
of order p of f the following limit

d∗
p := limsup

n→∞
sup

S
‖( f n)∗(S)‖1/n

W ,

where W ! V is a neighbourhood of K and the supremum is taken over positive
closed (k− p,k− p)-current of mass ≤ 1 on a fixed neighbourhood W ′ ! V of K .
Clearly, d∗

p ≥ dp, since we can take S = cωk−p with c > 0 small enough.

Lemma 2.6. The above definition does not depend on the choice of W , W ′. More-
over, we have d∗

0 = 1, d∗
k = dt and the dynamical ∗-degree of order p of f n is equal

to d∗
p

n.

Proof. If N is an integer large enough, the operator ( f N)∗ sends continuously pos-
itive closed currents on W ′ to the ones on V . Therefore, the independence of the
definition on W ′ is clear. If S is a probability measure on K , then ( f n)∗ is also a
probability measure on K . Therefore, d∗

0 = 1. Observe that

‖( f n)∗(S)‖1/n
W =

[∫

f−n(W )
S∧ ( f n)∗(ω p)

]1/n
.

So, for the other properties, it is enough to follow the arguments given in Lemma
2.3. +,

Many results below are proved under the hypothesis d∗
k−1 < dt . The following

proposition shows that this condition is stable under small perturbations on f . This
gives large families of maps satisfying the hypothesis. Indeed, the condition is
satisfied for polynomial maps in Ck which extend at infinity as endomorphisms of
Pk. For such maps, if d is the algebraic degree, one can check that d∗

p ≤ d p.

Proposition 2.7. Let f : U →V be a polynomial-like map of topological degree dt .
Let V ′ be a convex open set such that U ! V ′ ! V. If g : U → Ck is a holomorphic
map, close enough to f and U ′ := g−1(V ′), then g : U ′ → V ′ is a polynomial-like
map of topological degree dt . If moreover, f satisfies the condition d∗

p < dt for some
1 ≤ p ≤ k−1, then g satisfies the same property.
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Proof. The first assertion is clear, using the characterization of polynomial-maps
by their graphs. We prove the second one. Fix a constant δ with d∗

p < δ < dt and
an open set W such that U ! W ! V . Fix an integer N large enough such that
‖( f N)∗(S)‖W ≤ δN for any positive closed (k− p,k− p)-current S of mass 1 on U .
If g is close enough to f , we have g−N(U) ! f−N(W ) and

‖(gN)∗(ω p)− ( f N)∗(ω p)‖L∞(g−N(U)) ≤ ε

with ε > 0 a small constant. We have

‖(gN)∗(S)‖U =
∫

g−N(U)
S∧ (gN)∗(ω p)

≤
∫

f−N(W )
S∧ ( f N)∗(ω p)+

∫

g−N(U)
S∧

[
(gN)∗(ω p)− ( f N)∗(ω p)

]

≤ ‖( f N)∗(S)‖W + ε ≤ δN + ε < dN
t .

Therefore, the dynamical ∗-degree d∗
p(gN) of gN is strictly smaller than dN

t . Lemma
2.6 implies that d∗

p(g) < dt . +,

Remark 2.8. The proof gives that g .→ d∗
p(g) is upper semi-continuous on g.

Consider a simple example. Let f : C2 → C2 be the polynomial map f (z1,z2) =
(2z1,z2

2). The restriction of f to V := {|z1| < 2, |z2| < 2} is polynomial-like and
using the current S = [z1 = 0], it is not difficult to check that d1 = d∗

1 = dt = 2. The
example shows that in general one may have d∗

k−1 = dt .

Exercise 2.9. Let f : C2 → C2 be the polynomial map defined by f (z1,z2) :=
(3z2,z2

1 + z2). Show that the hyperplane at infinity is attracting. Compute the topo-
logical degree of f . Compute the topological degree of the map in Example 2.1.

Exercise 2.10. Let f be a polynomial map on Ck of algebraic degree d ≥ 2, which
extends to a holomorphic endomorphism of Pk. Let V be a ball large enough cen-
tered at 0 and U := f−1(V ). Prove that the polynomial-like map f : U →V satisfies
d∗

p = d p and dt = dk. Hint: use the Green function and Green currents.

2.2 Construction of the Green Measure

In this paragraph, we introduce the first version of the ddc-method. It allows to con-
struct for a polynomial-like map f a canonical measure which is totally invariant. As
we have seen in the case of endomorphisms of Pk, the method gives good estimates
and allows to obtain precise stochastic properties. Here, we will see that it applies
under a very weak hypothesis. The construction of the measure does not require any
hypothesis on the dynamical degrees and give useful convergence results.

Consider a polynomial-like map f : U → V of topological degree dt > 1 as
above. Define the Perron-Frobenius operator Λ acting on test functions ϕ by

Λ(ϕ)(z) := d−1
t f∗(ϕ)(z) := d−1

t ∑
w∈ f−1(z)

ϕ(w),
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where the points in f−1(z) are counted with multiplicity. Since f is a ramified
covering, Λ(ϕ) is continuous when ϕ is continuous. If ν is a probability measure
on V , define the measure f ∗(ν) by

〈 f ∗(ν),ϕ〉 := 〈ν, f∗(ϕ)〉.

This is a positive measure of mass dt supported on f−1(supp(ν)). Observe that the
operator ν .→ d−1

t f ∗(ν) is continuous on positive measures, see Exercise A.11.

Theorem 2.11. Let f : U →V be a polynomial-like map as above. Let ν be a prob-
ability measure supported on V which is defined by an L1 form. Then d−n

t ( f n)∗(ν)
converge to a probability measure µ which does not depend on ν . For ϕ p.s.h. on a
neighbourhood of the filled Julia set K , we have 〈d−n

t ( f n)∗(ν),ϕ〉 → 〈µ ,ϕ〉. The
measure µ is supported on the boundary of K and is totally invariant: d−1

t f ∗(µ) =
f∗(µ) = µ . Moreover, if Λ is the Perron-Frobenius operator associated to f and ϕ
is a p.s.h. function on a neighbourhood of K , then Λn(ϕ) converge to 〈µ ,ϕ〉.

Note that in general 〈µ ,ϕ〉 may be −∞. If 〈µ ,ϕ〉 = −∞, the above convergence
means that Λn(ϕ) tend locally uniformly to −∞; otherwise, the convergence is in
Lp

loc for 1 ≤ p < +∞, see Appendix A.2. The above result still holds for measures ν
which have no mass on pluripolar sets. The proof in that case is more delicate. We
have the following lemma.

Lemma 2.12. If ϕ is p.s.h. on a neighbourhood of K , then Λn(ϕ) converge to a
constant cϕ in R∪{−∞}.

Proof. Observe that Λn(ϕ) is defined on V for n large enough. It is not dif-
ficult to check that these functions are p.s.h. Indeed, when ϕ is a continu-
ous p.s.h. function, Λn(ϕ) is a continuous function, see Exercise A.11, and
ddcΛn(ϕ) = d−n

t ( f n)∗(ddcϕ) ≥ 0. So, Λn(ϕ) is p.s.h. The general case is obtained
using an approximation of ϕ by a decreasing sequence of smooth p.s.h. functions.

Consider ψ the upper semi-continuous regularization of limsupΛn(ϕ). We de-
duce from Proposition A.20 that ψ is a p.s.h. function. We first prove that ψ is con-
stant. Assume not. By maximum principle, there is a constant δ such that supU ψ <
δ < supV ψ . By Hartogs’ lemma A.20, for n large enough, we haveΛn(ϕ) < δ on U .
Since the fibers of f are contained in U , we deduce from the definition of Λ that

sup
V
Λn+1(ϕ) = sup

V
Λ(Λn(ϕ)) ≤ sup

U
Λn(ϕ) < δ .

This implies that ψ ≤ δ which contradicts the choice of δ . So ψ is constant.
Denote by cϕ this constant. If cϕ = −∞, it is clear that Λn(ϕ) converge to −∞

uniformly on compact sets. Assume that cϕ is finite andΛni(ϕ) does not converge to
cϕ for some sequence (ni). By Hartogs’ lemma, we haveΛni(ϕ) ≤ cϕ − ε for some
constant ε > 0 and for i large enough. We deduce as above that Λn(ϕ) ≤ cϕ − ε for
n ≥ ni. This contradicts the definition of cϕ . +,
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Proof of Theorem 2.11. We can replace ν with d−1
t f ∗(ν) in order to assume that

ν is supported on U . The measure ν can be written as a finite or countable sum of
bounded positive forms, we can assume that ν is a bounded form.

Consider a smooth p.s.h. function ϕ on a neighbourhood of K . It is clear that
Λn(ϕ) are uniformly bounded for n large enough. Therefore, the constant cϕ is fi-
nite. We deduce from Lemma 2.12 that Λn(ϕ) converge in L1

loc(V ) to cϕ . It follows
that

〈d−n
t ( f n)∗(ν),ϕ〉 = 〈ν,Λn(ϕ)〉 → cϕ .

Let φ be a general smooth function on V . We can always write φ as a differ-
ence of p.s.h. functions on U . Therefore, 〈d−n

t ( f n)∗(ν),φ〉 converge. It follows
that the sequence of probability measures d−n

t ( f n)∗(ν) converges to some proba-
bility measure µ . Since cϕ does not depend on ν , the measure µ does not depend
on ν . Consider a measure ν supported on U \K . So, the limit µ of d−n

t ( f n)∗(ν)
is supported on ∂K . The total invariance is a direct consequence of the above
convergence.

For the rest of the theorem, assume that ϕ is a general p.s.h. function on a
neighbourhood of K . Since limsupΛn(ϕ) ≤ cϕ , Fatou’s lemma implies that

〈µ ,ϕ〉 = 〈d−n
t ( f n)∗(µ),ϕ〉 = 〈µ ,Λn(ϕ)〉 ≤ 〈µ , limsup

n→∞
Λn(ϕ)〉 = cϕ .

On the other hand, for ν smooth on U , we have since ϕ is upper semi-continuous

cϕ = lim
n→∞

〈ν,Λn(ϕ)〉 = lim
n→∞

〈d−n
t ( f n)∗(ν),ϕ〉 ≤ 〈 lim

n→∞
d−n

t ( f n)∗(ν),ϕ〉 = 〈µ ,ϕ〉.

Therefore, cϕ = 〈µ ,ϕ〉. Hence, Λn(ϕ) converge to 〈µ ,ϕ〉 for an arbitrary p.s.h.
function ϕ . This also implies that 〈d−n

t ( f n)∗(ν),ϕ〉 → 〈µ ,ϕ〉. #
The measure µ is called the equilibrium measure of f . We deduce from the

above arguments the following result.

Proposition 2.13. Let ν be a totally invariant probability measure. Then ν is sup-
ported on K . Moreover, 〈ν,ϕ〉 ≤ 〈µ ,ϕ〉 for every function ϕ which is p.s.h. in a
neighbourhood of K and 〈ν,ϕ〉= 〈µ ,ϕ〉 if ϕ is pluriharmonic in a neighbourhood
of K .

Proof. Since ν = d−n
t ( f n)∗(ν), it is supported on f−n(V ) for every n ≥ 0. So, ν is

supported on K . We know that limsupΛn(ϕ) ≤ cϕ , then Fatou’s lemma implies
that

〈ν,ϕ〉 = lim
n→∞

〈d−n
t ( f n)∗(ν),ϕ〉 = lim

n→∞
〈ν,Λn(ϕ)〉 ≤ cϕ .

When ϕ is pluriharmonic, the inequality holds for −ϕ ; we then deduce that
〈ν,ϕ〉 ≥ cϕ . The proposition follows. +,

Corollary 2.14. Let X1,X2 be two analytic subsets of V such that f−1(X1)⊂ X1 and
f−1(X2) ⊂ X2. Then X1 ∩X2 "= ∅. In particular, f admits at most one point a such
that f−1(a) = {a}.
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Proof. Observe that there are totally invariant probability measures ν1,ν2 supported
on X1,X2. Indeed, if ν is a probability measure supported on Xi, then any limit
value of

1
N

N−1

∑
n=0

d−n
t ( f n)∗(ν)

is supported on Xi and is totally invariant. We are using the continuity of the operator
ν .→ d−1

t f ∗(ν), for the weak topology on measures.
On the other hand, if X1 and X2 are disjoint, we can find a holomorphic function h

on U such that h = c1 on X1 and h = c2 on X2, where c1,c2 are distinct constants. We
consider the function defined on X1 ∪X2 as claimed and extend it as a holomorphic
function in U . This is possible since V is convex [HO2]. Adding to h a constant
allows to assume that h does not vanish on K . Therefore, ϕ := log |h| is pluri-
harmonic on a neighbourhood of K . We have 〈ν1,ϕ〉 "= 〈ν2,ϕ〉. This contradicts
Proposition 2.13. +,

When the test function is pluriharmonic, we have the following exponential
convergence.

Proposition 2.15. Let W be a neighbourhood of K and F a bounded family of
pluriharmonic functions on W . There are constants N ≥ 0, c > 0 and 0 < λ < 1
such that if ϕ is a function in F , then

|〈Λn(ϕ)−〈µ ,ϕ〉| ≤ cλ n on V

for n ≥ N.

Proof. Observe that if N is large enough, the functions ΛN(ϕ) are pluriharmonic
and they absolute values are bounded on V by the same constant. We can replace ϕ
with ΛN(ϕ) in order to assume that W = V , N = 0 and that |ϕ | is bounded by some
constant A. Then, |Λn(ϕ)| ≤ A for every n. Subtracting from ϕ the constant 〈µ ,ϕ〉
allows to assume that 〈µ ,ϕ〉 = 0.

Let Fα denote the family of pluriharmonic functions ϕ on V such that |ϕ | ≤ α
and 〈µ ,ϕ〉 = 0. It is enough to show that Λ sends Fα into Fλα for some constant
0 < λ < 1. We can assume α = 1. Since µ is totally invariant,Λ preserves the sub-
space {ϕ , 〈µ ,ϕ〉= 0}. The family F1 is compact and does not contain the function
identically equal to 1. By maximum principle applied to ±ϕ , there is a constant
0 < λ < 1 such that supU |ϕ | ≤ λ for ϕ in F1. We deduce that supV |Λ(ϕ)| ≤ λ .
The result follows. +,

The following result shows that the equilibrium measure µ satisfies the Os-
eledec’s theorem hypothesis. It can be extended to a class of orientation preserving
smooth maps on Riemannian manifolds [DS1].

Theorem 2.16. Let f : U → V be a polynomial-like map as above. Let µ be the
equilibrium measure and J the Jacobian of f with respect to the standard volume
form on Ck. Then

〈µ , logJ〉 ≥ logdt .

In particular, µ has no mass on the critical set of f .
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Proof. Let ν be the restriction of the Lebesgue measure to U multiplied by a
constant so that ‖ν‖ = 1. Define

νn := d−n
t ( f n)∗(ν) and µN :=

1
N

N

∑
n=1

νn.

By Theorem 2.11, µN converge to µ . Choose a constant M > 0 such that J ≤ M
on U . For any constant m > 0, define

gm(x) := min
(

log
M

J(x)
,m+ logM

)
= min

(
log

M
J(x)

,m′
)

with m′ := m + logM. This is a family of continuous functions which are positive,
bounded on U and which converge to logM/J when m goes to infinity. Define

sN(x) :=
1
N

N−1

∑
q=0

gm( f q(x)).

Using the definition of f ∗ on measures, we obtain

〈νN ,sN〉 =
1
N

N−1

∑
q=0

d−N
t

〈
( f N)∗(ν),gm ◦ f q〉

=
1
N

N−1

∑
q=0

d−N+q
t

〈
( f N−q)∗(ν),gm

〉

=
1
N

N−1

∑
q=0

〈νN−q,gm〉 = 〈µN ,gm〉.

In order to bound 〈µ , logJ〉 from below, we will bound 〈µN ,gm〉 from above.
For α > 0, let Uα

N denote the set of points x ∈ U such that sN(x) > α . Since
sN(x) ≤ m′, we have

〈µN ,gm〉 = 〈νN ,sN〉 ≤ m′νN(Uα
N )+α(1−νN(Uα

N ))
= α+(m′ −α)νN(Uα

N ).

If νN(Uα
N ) converge to 0 when N → ∞, then

〈µ ,gm〉 = lim
N→∞

〈µN ,gm〉 ≤ α and hence 〈µ , logM/J〉 ≤ α.

We determine a value of α such that νN(Uα
N ) tend to 0.

By definition of νN , we have

νN(Uα
N ) =

∫

Uα
N

d−N
t ( f N)∗(ν) =

∫

Uα
N

d−N
t

(
N−1

∏
q=0

J ◦ f q

)
dν.
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Define for a given δ > 0 and for any integer j,

Wj :=
{

exp(− jδ ) < J ≤ exp(−( j−1)δ )
}

and
τ j(x) :=

1
N

#
{

q, f q(x) ∈Wj and 0 ≤ q ≤ N −1
}
.

We have ∑τ j = 1 and

νN(Uα
N ) ≤

∫

Uα
N

[
1
dt

exp
(
∑−( j−1)δτ j

)]N

dν.

Using the inequality gm ≤ logM/J, we have on Uα
N

α < sN <∑τ j(logM + jδ ) =∑ jδτ j + logM.

Therefore,
−∑( j−1)δτ j < −α+(logM + δ ).

We deduce from the above estimate on νN(Uα
N ) that

νN(Uα
N ) ≤

∫

Uα
N

[
exp(−α)M exp(δ )

dt

]N

dν.

So, for every α > log(M/dt)+ δ , we have νN(Uα
N ) → 0.

Choosing δ arbitrarily small, we deduce from the above discussion that

lim
N→∞

〈µN ,gm〉 ≤ log(M/dt).

Since gm is continuous and µN converge to µ , we have 〈µ ,gm〉 ≤ log(M/dt). Letting
m go to infinity gives 〈µ , logJ〉 ≥ logdt . +,

Exercise 2.17. Let ϕ be a strictly p.s.h. function on a neighbourhood of K , i.e. a
p.s.h. function satisfying ddcϕ ≥ cddc‖z‖2, with c > 0, in a neighbourhood of K .
Let ν be a probability measure such that 〈d−n

t ( f n)∗(ν),ϕ〉 converge to 〈µ ,ϕ〉 and
that 〈µ ,ϕ〉 is finite. Show that d−n

t ( f n)∗(ν) converge to µ .

Exercise 2.18. Using the test function ϕ = ‖z‖2, show that
∫

f−n(U)
( f n)∗(ωk−1)∧ω = o(dn

t ),

when n goes to infinity.

Exercise 2.19. Let Y denote the set of critical values of f . Show that the volume of
f n(Y ) in U satisfies volume( f n(Y )∩U) = o(dn

t ) when n goes to infinity.
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Exercise 2.20. Let f be a polynomial endomorphism of C2 of algebraic degree
d ≥ 2. Assume that f extends at infinity to an endomorphism of P2. Show that f
admits at most three totally invariant points7.

2.3 Equidistribution Problems

In this paragraph, we consider polynomial-like maps f satisfying the hypothesis
that the dynamical degree d∗

k−1 is strictly smaller than dt . We say that f has a large
topological degree. We have seen that this property is stable under small pertuba-
tions of f . Let Y denote the hypersurface of critical values of f . As in the case of
endomorphisms of Pk, define the ramification current R by

R := ∑
n≥0

d−n
t ( f n)∗[Y ].

The following result is a version of Proposition 1.51.

Proposition 2.21. Let f : U → V be a polynomial-like map as above with large
topological degree. Let ν be a strictly positive constant and let a be a point in V
such that the Lelong number ν(R,a) is strictly smaller than ν . Let δ be a constant
such that dk−1 < δ < dt . Then, there is a ball B centered at a such that f n admits at
least (1−

√
ν)dn

t inverse branches gi : B →Wi where Wi are open sets in V of diam-
eter ≤ δ n/2d−n/2

t . In particular, if µ ′ is a limit value of the measures d−n
t ( f n)∗(δa)

then ‖µ ′ − µ‖ ≤ 2
√
ν(R,a).

Proof. Since d∗
k−1 < dt , the current R is well-defined and has locally finite mass.

If ω is the standard Kähler form on Ck, we also have ‖( f n)∗(ω)‖V ′ " δ n for every
open set V ′ ! V . So, for the first part of the proposition, it is enough to follow
the arguments in Proposition 1.51. The proof there is written in such way that the
estimates are local and can be extended without difficulty to the present situation.
In particular, we did not use Bézout’s theorem.

For the second assertion, we do not have yet the analogue of Proposition 1.46,
but it is enough to compare d−n

t ( f n)∗(δa) with the pull-backs of a smooth measure
supported on B and to apply Theorem 2.11. +,

We deduce the following result as in the case of endomorphisms of Pk.

Theorem 2.22. Let f : U →V be a polynomial-like map as above with large topo-
logical degree. Let Pn denote the set of repelling periodic points of period n on the
support of µ . Then the sequence of measures

7 This result was proved in [DS1]. Amerik and Campana proved in [AC] for a general non-
invertible endomorphism of P2 that the number of totally invariant points is at most equal to 9. The
sharp bound (probably 3) is unknown. One deduces from Corollary 2.14 and Amerik-Campana
result that any non-invertible polynomial map on C3 which extends at infinity to an endomorphism
of P3, admits at most 10 totally invariant points.
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µn := d−n
t ∑

a∈Pn

δa

converges to µ .

Proof. It is enough to repeat the proof of Theorem 1.57 and to show that f n ad-
mits exactly dn

t fixed points counted with multiplicity. We can assume n = 1. Let Γ
denote the graph of f in U ×V ⊂V ×V . The number of fixed points of f is the num-
ber of points in the intersection of Γ with the diagonal ∆ of Ck ×Ck. Observe that
this intersection is contained in the compact set K ×K . For simplicity, assume
that V contains the point 0 in Ck. Let (z,w) denote the standard coordinates on
Ck ×Ck where the diagonal is given by the equation z = w. Consider the deforma-
tions ∆t := {w = tz} with 0 ≤ t ≤ 1 of ∆ . Since V is convex, it is not difficult to see
that the intersection of Γ with this family stays in a compact subset of V ×V . There-
fore, the number of points in ∆t ∩Γ , counted with multiplicity, does not depend on t.
For t = 0, this is just the number of points in the fiber f−1(0). The result follows.+,

The equidistribution of negative orbits of points is more delicate than in the case
of endomorphisms of Pk. It turns out that the exceptional set E does not satisfy in
general f−1(E ) = E ∩U . We have the following result.

Theorem 2.23. Let f : U →V be a polynomial-like map as above with large topo-
logical degree. Then there is a proper analytic subset E of V , possibly empty, such
that d−n

t ( f n)∗(δa) converge to the equilibrium measure µ if and only if a does not
belong to the orbit of E . Moreover, E satisfies f−1(E ) ⊂ E ⊂ f (E ) and is maximal
in the sense that if E is a proper analytic subset of V contained in the orbit of
critical values such that f−n(E) ⊂ E for some n ≥ 1 then E ⊂ E .

The proof follows the main lines of the case of endomorphisms of Pk using the
following proposition applied to Z the set of critical values of f . The set E will
be defined as E := EZ . Observe that unlike in the case of endomorphisms of Pk,
we need to assume that E is in the orbit of the critical values.

Let Z be an arbitrary analytic subset of V not necessarily of pure dimension. Let
Nn(a) denote the number of orbits

a−n, . . . ,a−1,a0

with f (a−i−1) = a−i and a0 = a such that a−i ∈ Z for every i. Here, the orbits
are counted with multiplicity, i.e. we count the multiplicity of f n at a−n. So, Nn(a)
is the number of negative orbits of order n of a which stay in Z. Observe that the
sequence of functions τn := d−n

t Nn decreases to some function τ . Since τn are upper
semi-continuous with respect to the Zariski topology and 0 ≤ τn ≤ 1, the function
τ satisfies the same properties. Note that τ(a) is the proportion of infinite negative
orbits of a staying in Z. Define EZ := {τ = 1}. The Zariski upper semi-continuity
of τ implies that EZ is analytic. It is clear that f−1(EZ) ⊂ EZ which implies that
EZ ⊂ f (EZ).

Proposition 2.24. If a point a ∈ V does not belong to the orbit ∪n≥0 f n(EZ) of EZ,
then τ(a) = 0.
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Proof. Assume there is θ0 > 0 such that {τ ≥ θ0} is not contained in the orbit of
EZ . We claim that there is a maximal value θ0 satisfying the above property. Indeed,
by definition, τ(a) is smaller than or equal to the average of τ on the fiber of a. So,
we only have to consider the components of {τ ≥ θ0} which intersect U and there
are only finitely many of such components, hence the maximal value exists.

Let E be the union of irreducible components of {τ ≥ θ0} which are not con-
tained in the orbit of EZ . Since θ0 > 0, we know that E ⊂ Z. We want to prove
that E is empty. If a is a generic point in E , it does not belong to the orbit of EZ
and we have τ(a) = θ0. If b is a point in f−1(a), then b is not in the orbit of EZ .
Therefore, τ(b) ≤ θ0. Since τ(a) is smaller than or equal to the average of τ on
f−1(a), we deduce that τ(b) = θ0, and hence f−1(a) ⊂ E . By induction, we obtain
that f−n(a) ⊂ E ⊂ Z for every n ≥ 1. Hence, a ∈ EZ . This is a contradiction. +,

The following example shows that in general the orbit of E is not an analytic
set. We deduce that in general polynomial-like maps are not homeomorphically
conjugated to restrictions on open sets of endomorphisms of Pk (or polynomial
maps of Ck such that the infinity is attractive) with the same topological degree.

Example 2.25. Denote by D(a,R) the disc of radius R and of center a in C. Observe
that the polynomial P(z) := 6z2 + 1 defines a ramified covering of degree 2 from
D := P−1(D(0,4)) to D(0,4). The domain D is simply connected and is contained
in D(0,1). Let ψ be a bi-holomorphic map between D(1,2) and D(0,1) such that
ψ(0) = 0. Define h(z,w) := (P(z),4ψm(w)) with m large enough. This application
is holomorphic and proper from W := D×D(1,2) to V := D(0,4)×D(0,4). Its
critical set is given by zw = 0.

Define also

g(z,w) := 10−2(exp(z)cos(πw/2),exp(z)sin(πw/2)
)
.

One easily check that g defines a bi-holomorphic map between W and U := g(W ).
Consider now the polynomial-like map f : U →V defined by f = h ◦ g−1. Its topo-
logical degree is equal to 2m; its critical set C is equal to g{zw = 0}. The image of
C1 := g{z = 0} by f is equal to {z = 1} which is outside U . The image of g{w = 0}
by f is {w = 0}∩V .

The intersection {w = 0} ∩U contains two components C2 := g{w = 0} and
C′

2 := g{w = 2}. They are disjoint because g is bi-holomorphic. We also have
f (C2) = {w = 0} ∩ V and f−1{w = 0} = C2. Therefore, E = {w = 0} ∩ V ,
f−1(E ) ⊂ E and f−1(E ) "= E ∩U since f−1(E ) does not contain C′

2. The orbit
of E is the union of C2 and of the orbit of C′

2. Since m is large, the image of C′
2 by

f is a horizontal curve very close to {w = 0}. It follows that the orbit of C′
2 is a

countable union of horizontal curves close to {w = 0} and it is not analytic.
It follows that f is not holomorphically conjugate to an endomorphism (or a

polynomial map such that the hyperplane at infinity is attractive) with the same
topological degree. If it were, the exceptional set would not have infinitely many
components in a neighbourhood of w = 0.
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Remark 2.26. Assume that f is not with large topological degree but that the series
which defines the ramification current R converges. We can then construct inverse
branches as in Proposition 2.21. To obtain the same exponential estimates on the
diameter of Wi, it is enough to assume that dk−1 < dt . In general, we only have that
these diameters tend uniformly to 0 when n goes to infinity. Indeed, we can use the
estimate in Exercise 2.18. The equidistribution of periodic points and of negative
orbits still holds in this case.

Exercise 2.27. Let f be a polynomial-like map with large topological degree. Show
that there is a small perturbation of f , arbitrarily close to f , whose exceptional set
is empty.

2.4 Properties of the Green Measure

Several properties of the equilibrium measure of polynomial-like maps can be
proved using the arguments that we introduced in the case of endomorphisms of Pk.
We have the following result for general polynomial-like maps.

Theorem 2.28. Let f : U → V be a polynomial-like map of topological degree
dt > 1. Then its equilibrium measure µ is an invariant measure of maximal entropy
logdt . Moreover, µ is K-mixing.

Proof. By Theorem 2.16, µ has no mass on the critical set of f . Therefore, it is
an invariant measure of constant Jacobian dt in the sense that µ( f (A)) = dt µ(A)
when f is injective on a Borel set A. We deduce from Parry’s theorem 1.116 that
hµ( f )≥ logdt . The variational principle and Theorem 2.4 imply that hµ( f ) = logdt .

We prove the K-mixing property. As in the case of endomorphisms of Pk,
it is enough to show for ϕ in L2(µ) that Λn(ϕ) → 〈µ ,ϕ〉 in L2(µ). Since
Λ : L2(µ) → L2(µ) is of norm 1, it is enough to check the convergence for a
dense family of ϕ . So, we only have to consider ϕ smooth. We can also assume
that ϕ is p.s.h. because smooth functions can be written as a difference of p.s.h.
functions. Assume also for simplicity that 〈µ ,ϕ〉 = 0.

So, the p.s.h. functions Λn(ϕ) converge to 0 in Lp
loc(V ). By Hartogs’ lemma

A.20, supU Λn(ϕ) converge to 0. This and the identity 〈µ ,Λn(ϕ)〉 = 〈µ ,ϕ〉 = 0
imply that µ{Λn(ϕ) < −δ} → 0 for every fixed δ > 0. On the other hand, by
definition of Λ , |Λn(ϕ)| is bounded by ‖ϕ‖∞ which is a constant independent of n.
Therefore,Λn(ϕ) → 0 in L2(µ) and K-mixing follows. +,

The following result, due to Saleur [S], generalizes Theorem 1.118.

Theorem 2.29. Let f : U → V be a polynomial-like map with large topological
degree. Then its equilibrium measure is the unique invariant probability measure of
maximal entropy.
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The proof follows the one of Theorem 1.118. The estimates of some integrals
over Pk are replaced with the volume estimate in Lemma 2.5. A new difficulty here
is to prove that if ν is an ergodic measure of maximal entropy, it has no mass on
the set of critical values of f which may be singular. For this purpose, Saleur uses a
version of Lemma 2.5 where V is replaced with an analytic set.

Theorem 2.30. Let f and µ be as above. Then the sum of the Lyapounov exponents
of µ is at least equal to 1

2 logdt . In particular, f admits a strictly positive Lya-
pounov exponent. If f is with large topological degree, then µ is hyperbolic and its
Lyapounov exponents are at least equal to 1

2 log(dt/dk−1).

Proof. By Oseledec’s theorem 1.119, applied in the complex setting, the sum of
the Lyapounov exponents of µ (associated to complex linear spaces) is equal to
1
2 〈µ , logJ〉. Theorem 2.16 implies that this sum is at least equal to 1

2 logdt . The
second assertion is proved as in Theorem 1.120 using Proposition 2.21. +,

From now on, we only consider maps with large topological degree. The follow-
ing result was obtained by Dinh-Dupont in [DD]. It generalizes Theorem 1.121.

Theorem 2.31. Let f be a polynomial-like map with large topological degree as
above. Let χ1, . . . ,χk denote the Lyapounov exponents of the equilibrium measure
µ ordered by χ1 ≥ ·· · ≥ χk and Σ their sum. Then the Hausdorff dimension of µ
satisfies

logdt

χ1
≤ dimH(µ) ≤ 2k− 2Σ − logdt

χ1
·

We now prove some stochastic properties of the equilibrium measure. We first
introduce some notions. Let V be an open subset of Ck and ν a probability measure
with compact support in V . We consider ν as a function on the convex cone PSH(V )
of p.s.h. functions on V , with the L1

loc-topology. We say that ν is PB if this function
is finite, i.e. p.s.h. functions on V are ν-integrable. We say that ν is PC if it is
PB and defines a continuous functional on PSH(V ). Recall that the weak topology
on PSH(V ) coincides with the Lp

loc topology for 1 ≤ p < +∞. In dimension 1, a
measure is PB if it has locally bounded potentials, a measure is PC if it has locally
continuous potentials. A measure ν is moderate if for any bounded subset P of
PSH(V ), there are constants α > 0 and A > 0 such that

〈ν,eα |ϕ|〉 ≤ A for ϕ ∈ P.

Let K be a compact subset of V . Define a pseudo-distance distL1(K) between ϕ ,ψ
in PSH(V ) by

distL1(K)(ϕ ,ψ) := ‖ϕ−ψ‖L1(K).

Observe that if ν is continuous with respect to distL1(K) then ν is PC. The following
proposition gives a criterion for a measure to be moderate.

Proposition 2.32. If ν is Hölder continuous with respect to distL1(K) for some com-
pact subset K of V , then ν is moderate. If ν is moderate, then p.s.h. functions on V
are in Lp(ν) for every 1 ≤ p < +∞ and ν has positive Hausdorff dimension.
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Proof. We prove the first assertion. Assume that ν is Hölder continuous with re-
spect to distL1(K) for some compact subset K of V . Consider a bounded subset P of
PSH(V ). The functions in P are uniformly bounded above on K. Therefore, sub-
tracting from these functions a constant allows to assume that they are negative on K.
We want to prove the estimate 〈ν,e−αϕ〉≤A forϕ ∈P and for some constantsα,A.
It is enough to show that ν{ϕ < −M} " e−αM for some (other) constant α > 0 and
for M ≥ 1. For M ≥ 0 and ϕ ∈ P , define ϕM := max(ϕ ,−M). We replace P with
the family of functions ϕM . This allows to assume that the family is stable under
the operation max(·,−M). Observe that ϕM−1 −ϕM is positive, supported on {ϕ <
−M +1}, smaller or equal to 1, and equal to 1 on {ϕ < −M}. In order to obtain the
above estimate, we only have to show that 〈ν,ϕM−1 −ϕM〉" e−αM for some α > 0.

Fix a constant λ > 0 small enough and a constant A > 0 large enough. Since ν
is Hölder continuous and ϕM−1 −ϕM vanishes on {ϕ > −M + 1}, we have

ν{ϕ < −M} ≤ 〈ν,ϕM−1〉− 〈ν,ϕM〉 ≤ A ‖ϕM−1 −ϕM‖λL1(K)

≤ Avolume{ϕ ≤−M + 1}λ .

On the other hand, since P is a bounded family in PSH(V ), by Theorem A.22, we
have ‖e−λϕ‖L1(K) ≤ A for ϕ ∈ P . Hence, we have on K

volume{ϕ ≤−M + 1} ≤ Ae−λ (M−1).

This implies the desired estimate for α = λ 2 and completes the proof of the first
assertion.

Assume now that ν is moderate. Let ϕ be a p.s.h. function on V . Then eα |ϕ|

is in L1(ν) for some constant α > 0. Since eαx $ xp for 1 ≤ p < +∞, we deduce
that ϕ is in Lp(ν). For the last assertion in the proposition, it is enough to show
that ν(Br) ≤ Arα for any ball Br of radius r > 0 where A,α are some positive
constants. We can assume that Br is a small ball centered at a point a ∈ K. Define
ϕ(z) := log‖z− a‖. This function belongs to a compact family of p.s.h. functions.
Therefore, ‖e−αϕ‖L1(ν) ≤ A for some positive constants A,α independent of Br.
Since e−αϕ ≥ r−α on Br, we deduce that ν(Br)≤ Arα . It is well-known that in order
to compute the Hausdorff dimension of a set, it is enough to use only coverings by
balls. It follows easily that if a Borel set has positive measure, then its Hausdorff
dimension is at least equal to α . This completes the proof. +,

The following results show that the equilibrium measure of a polynomial-like
map with large topological degree satisfies the above regularity properties.

Theorem 2.33. Let f : U → V be a polynomial-like map. Then the following prop-
erties are equivalent:

1. The map f has large topological degree, i.e. dt > d∗
k−1;

2. The measure µ is PB, i.e. p.s.h. functions on V are integrable with respect to µ;
3. The measure µ is PC, i.e. µ can be extended to a linear continuous form on the

cone of p.s.h. functions on V;
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Moreover, if f is such a map, then there is a constant 0 < λ < 1 such that

sup
V
Λ(ϕ)−〈µ ,ϕ〉 ≤ λ

[
sup

V
ϕ−〈µ ,ϕ〉

]
,

for ϕ p.s.h. on V .

Proof. It is clear that 3) ⇒ 2). We show that 1) ⇒ 3) and 2) ⇒ 1).

1) ⇒ 3). Let ϕ be a p.s.h. function on V . Let W be a convex open set such that
U ! W ! V . For simplicity, assume that ‖ϕ‖L1(W ) ≤ 1. So, ϕ belongs to a compact
subset of PSH(W ). Therefore, S := ddcϕ has locally bounded mass in W . Define
Sn := ( f n)∗(S). Fix a constant δ > 1 such that d∗

k−1 < δ < dt . Condition 1) implies
that ‖( f n)∗(S)‖W " δ n. By Proposition A.16, there are p.s.h. functions ϕn on U
such that ddcϕn = Sn and ‖ϕn‖U " δ n on U .

Define ψ0 := ϕ−ϕ0 and ψn := f∗(ϕn−1)−ϕn. Observe that these functions are
pluriharmonic on U and depend continuously on ϕ . Moreover, f∗ sends continu-
ously p.s.h. functions on U to p.s.h. functions on V . Hence,

‖ψn‖L1(U) ≤ ‖ f∗(ϕn−1)‖L1(U) +‖ϕn‖L1(U) " δ n.

We have

Λn(ϕ) = Λn(ψ0 +ϕ0) =Λn(ψ0)+ d−1
t Λn−1( f∗(ϕ0))

= Λn(ψ0)+ d−1
t Λn−1(ψ1 +ϕ1) = · · ·

= Λn(ψ0)+ d−1
t Λn−1(ψ1)+ · · ·+ d−n+1

t Λ(ψn−1)+ d−n
t ψn + d−n

t ϕn.

The last term in the above sum converges to 0. The above estimate on ψn and their
pluriharmonicity imply, by Proposition 2.15, that the sum

Λn(ψ0)+ d−1
t Λn−1(ψ1)+ · · ·+ d−n+1

t Λ(ψn−1)+ d−n
t ψn

converges uniformly to the finite constant

〈µ ,ψ0〉+ d−1
t 〈µ ,ψ1〉+ · · ·+ d−n

t 〈µ ,ψn〉+ · · ·

which depends continuously on ϕ . We used here the fact that when ψ is plurihar-
monic, 〈µ ,ψ〉 depends continuously on ψ . By Theorem 2.11, the above constant is
equal to 〈µ ,ϕ〉. Consequently, µ is PC.

2) ⇒ 1). Let F be an L1 bounded family of p.s.h. functions on a neighbour-
hood of K . We first show that 〈µ ,ϕ〉 is uniformly bounded on F . Since
〈µ ,ΛN(ϕ)〉 = 〈µ ,ϕ〉, we can replace ϕ with ΛN(ϕ), with N large enough, in
order to assume that F is a bounded family of p.s.h. functions ϕ on V which are
uniformly bounded above. Subtracting from ϕ a fixed constant allows to assume
that these functions are negative. If 〈µ ,ϕ〉 is not uniformly bounded on F , there are
ϕn such that 〈µ ,ϕn〉 ≤ −n2. It follows that the series ∑n−2ϕn decreases to a p.s.h.
function which is not integrable with respect to µ . This contradicts that µ is PB.
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We deduce that for any neighbourhood W of K , there is a constant c > 0 such that
|〈µ ,ϕ〉| ≤ c‖ϕ‖L1(W) for ϕ p.s.h. on W .

We now show that there is a constant 0 < λ < 1 such that supV Λ(ϕ) ≤ λ if
ϕ is a p.s.h. function on V , bounded from above by 1, such that 〈µ ,ϕ〉 = 0. This
property implies the last assertion in the proposition. Assume that the property is
not satisfied. Then, there are functions ϕn such that supV ϕn = 1, 〈µ ,ϕn〉 = 0 and
supV Λ(ϕn) ≥ 1−1/n2. By definition of Λ , we have

sup
U
ϕn ≥ sup

V
Λ(ϕn) ≥ 1−1/n2.

The submean value inequality for p.s.h. functions implies that ϕn converge to 1 in
L1

loc(V ). On the other hand, we have

1 = |〈µ ,ϕn −1〉| ≤ c‖ϕn −1‖L1(W ).

This is a contradiction.
Finally, consider a positive closed (1,1)-current S of mass 1 on W . By

Proposition A.16, there is a p.s.h. function ϕ on a neighbourhood of U with
bounded L1 norm such that ddcϕ = S. The submean inequality for p.s.h functions
implies that ϕ is bounded from above by a constant independent of S. We can
after subtracting from ϕ a constant, assume that 〈µ ,ϕ〉 = 0. The p.s.h. functions
λ−nΛn(ϕ) are bounded above and satisfy 〈µ ,λ−nΛn(ϕ)〉 = 〈µ ,ϕ〉 = 0. Hence,
they belong to a compact subset of PSH(U) which is independent of S. If W ′ is
a neighbourhood of K such that W ′ ! U , the mass of ddc

[
λ−nΛn(ϕ)

]
on W ′ is

bounded uniformly on n and on S. Therefore,

‖ddc( f n)∗(S)‖W ′ ≤ cλ ndn
t

for some constant c > 0 independent of n and of S. It follows that d∗
k−1 ≤ λdt . This

implies property 1). +,

Theorem 2.34. Let f : U → V be a polynomial-like map with large topological
degree. Let P be a bounded family of p.s.h. functions on V . Let K be a compact
subset of V such that f−1(K) is contained in the interior of K. Then, the equilibrium
measure µ of f is Hölder continuous on P with respect to distL1(K). In particular,
this measure is moderate.

Let DSH(V ) denote the space of d.s.h. functions on V , i.e. functions which are
differences of p.s.h. functions. They are in particular in Lp

loc(V ) for every 1 ≤ p <
+∞. Consider on DSH(V ) the following topology: a sequence (ϕn) converges to ϕ
in DSH(V ) if ϕn converge weakly to ϕ and if we can write ϕn = ϕ+

n −ϕ−
n with ϕ±

n
in a compact subset of PSH(V ), independent of n. We deduce from the compactness
of bounded sets of p.s.h. functions that ϕn → ϕ in all Lp

loc(V ) with 1 ≤ p < +∞.
Since µ is PC, it extends by linearity to a continuous functional on DSH(V ).

Proof of Theorem 2.34. Let P be a compact family of p.s.h. functions on V . We
show that µ is Hölder continuous on P with respect to distL1(K). We claim that Λ
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is Lipschitz with respect to distL1(K). Indeed, if ϕ ,ψ are in L1(K), we have for the
standard volume form Ω on Ck

‖Λ(ϕ)−Λ(ψ)‖L1(K) =
∫

K
|Λ(ϕ−ψ)|Ω ≤ d−1

t

∫

f−1(K)
|ϕ−ψ | f ∗(Ω).

since f−1(K) ⊂ K and f ∗(Ω) is bounded on f−1(K), this implies that

‖Λ(ϕ)−Λ(ψ)‖L1(K) ≤ const‖ϕ−ψ‖L1(K).

Since P is compact, the functions in P are uniformly bounded above on U .
Therefore, replacing P by the family of Λ(ϕ) with ϕ ∈ P allows to assume that
functions in P are uniformly bounded above on V . On the other hand, since µ is
PC, µ is bounded on P . Without loss of generality, we can assume that P is the set
of functions ϕ such that 〈µ ,ϕ〉 ≥ 0 and ϕ ≤ 1. In particular, P is invariant underΛ .
Let D be the family of d.s.h. functions ϕ −Λ(ϕ) with ϕ ∈ P . This is a compact
subset of DSH(V ) which is invariant underΛ , and we have 〈µ ,ϕ ′〉 = 0 for ϕ ′ in D .

Consider a function ϕ ∈ P . Observe that ϕ̃ := ϕ −〈µ ,ϕ〉 is also in P . Define
Λ̃ := λ−1Λ with λ the constant in Theorem 2.33. We deduce from that theorem
that Λ̃ (ϕ̃) is in P . Moreover,

Λ̃
(
ϕ−Λ(ϕ)

)
= Λ̃

(
ϕ̃−Λ(ϕ̃)

)
= Λ̃(ϕ̃)−Λ

(
Λ̃ (ϕ̃)

)
.

Therefore, D is invariant under Λ̃ . This is the key point in the proof. Observe that
we can extend distL1(K) to DSH(V ) and that Λ̃ is Lipschitz with respect to this
pseudo-distance.

Let ν be a smooth probability measure with support in K. We have seen that
d−n

t ( f n)∗(ν) converge to µ . If ϕ is d.s.h. on V , then

〈d−n
t ( f n)∗(ν),ϕ〉 = 〈ν,Λn(ϕ)〉.

Define for ϕ in P , ϕ ′ := ϕ−Λ(ϕ). We have

〈µ ,ϕ〉 = lim
n→∞

〈ν,Λn(ϕ)〉

= 〈ν,ϕ〉−∑
n≥0

〈ν,Λn(ϕ)〉− 〈ν,Λn+1(ϕ)〉

= 〈ν,ϕ〉−∑
n≥0
λ n〈ν,Λ̃n(ϕ ′)〉.

Since ν is smooth with support in K, it is Lipschitz with respect to distL1(K). We
deduce from Lemma 1.19 which is also valid for a pseudo-distance, that the last
series defines a Hölder continuous function on D . We use here the invariance of D
under Λ̃ . Finally, since the map ϕ .→ ϕ ′ is Lipschitz on P , we conclude that µ is
Hölder continuous on P with respect to distL1(K). #
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As in the case of endomorphisms of Pk, we deduce from the above results the
following fundamental estimates on the Perron-Frobenius operatorΛ .

Corollary 2.35. Let f be a polynomial-like map with large topological degree as
above. Let µ be the equilibrium measure and Λ the Perron-Frobenius operator
associated to f . Let D be a bounded subset of d.s.h. functions on V . There are
constants c > 0, δ > 1 and α > 0 such that if ψ is in D , then

〈
µ ,eαδ

n|Λn(ψ)−〈µ,ψ〉|〉≤ c and ‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ cqδ−n

for every n ≥ 0 and every 1 ≤ q < +∞.

Corollary 2.36. Let f , µ , Λ be as above. Let 0 < ν ≤ 2 be a constant. There are
constants c > 0, δ > 1 and α > 0 such that if ψ is a ν-Hölder continuous function
on V with ‖ψ‖C ν ≤ 1, then

〈
µ ,eαδ

nν/2|Λn(ψ)−〈µ,ψ〉|〉≤ c and ‖Λn(ψ)−〈µ ,ψ〉‖Lq(µ) ≤ cqν/2δ−nν/2

for every n ≥ 0 and every 1 ≤ q < +∞. Moreover, δ is independent of ν .

The following results are deduced as in the case of endomorphisms of Pk.

Theorem 2.37. Let f : U → V be a polynomial-like map with large topological
degree and µ the equilibrium measure of f . Then f is exponentially mixing. More
precisely, there is a constant 0 < λ < 1, such that if 1 < p ≤ +∞, we have

|〈µ ,(ϕ ◦ f n)ψ〉− 〈µ ,ϕ〉〈µ ,ψ〉| ≤ cpλ n‖ϕ‖Lp(µ)‖ψ‖L1(V )

for ϕ in Lp(µ), ψ p.s.h. on V and n ≥ 0, where cp > 0 is a constant independent of
ϕ ,ψ . If ν is such that 0 ≤ ν ≤ 2, then there is a constant cp,ν > 0 such that

|〈µ ,(ϕ ◦ f n)ψ〉− 〈µ ,ϕ〉〈µ ,ψ〉| ≤ cp,νλ nν/2‖ϕ‖Lp(µ)‖ψ‖C ν

for ϕ in Lp(µ), ψ a C ν function on V and n ≥ 0.

The following result gives the exponential mixing of any order. It can be extended
to Hölder continuous observables using the theory of interpolation between Banach
spaces.

Theorem 2.38. Let f ,µ be as in Theorem 2.37 and r ≥ 1 an integer. Then there are
constants c > 0 and 0 < λ < 1 such that

∣∣∣〈µ ,ψ0(ψ1 ◦ f n1) . . . (ψr ◦ f nr)〉−
r

∏
i=0

〈µ ,ψi〉
∣∣∣≤ cλ n

r

∏
i=0

‖ψi‖L1(V )

for 0 = n0 ≤ n1 ≤ ·· · ≤ nr, n := min0≤i<r(ni+1 −ni) and ψi p.s.h. on V .

As in Section 1, we deduce the following result, as a consequence of Gordin’s
theorem and of the exponential decay of correlations.
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Theorem 2.39. Let f be a polynomial-like map with large topological degree as
above. Let ϕ be a test function which is C ν with ν > 0, or is d.s.h. on V . Then,
either ϕ is a coboundary or it satisfies the central limit theorem with the variance
σ > 0 given by

σ2 := 〈µ ,ϕ2〉+ 2∑
n≥1

〈µ ,ϕ(ϕ ◦ f n)〉.

The following result is obtained as in Theorem 1.102, as a consequence of the
exponential estimates in Corollaries 2.35 and 2.36.

Theorem 2.40. Let f be a polynomial-like map with large topological degree as
above. Then, the equilibrium measure µ of f satisfies the weak large deviations
theorem for bounded d.s.h. observables and for Hölder continuous observables.
More precisely, if a function ψ is bounded d.s.h. or Hölder continuous then for
every ε > 0 there is a constant hε > 0 such that

µ
{

z ∈ supp(µ) :

∣∣∣∣∣
1
N

N−1

∑
n=0

ϕ ◦ f n(z)−〈µ ,ϕ〉

∣∣∣∣∣> ε
}

≤ e−N(logN)−2hε

for all N large enough.

Theorem 1.91 can be extended to polynomial-like maps with large topological
degrees.

Theorem 2.41. Let f : U → V be a polynomial-like map with large topological
degree and µ its equilibrium measure. Let ϕ be an observable on V with values in
R∪{−∞} such that eϕ is Hölder continuous, H := {ϕ = −∞} is an analytic subset
of V and |ϕ | " | logdist(·,H)|ρ near H for some ρ > 0. If 〈µ ,ϕ〉 = 0 and ϕ is not
a coboundary, then the almost sure invariance principle holds for ϕ . In particular,
the almost sure central limit theorem holds for such observables.

A technical point here is to prove that if Ht is the t-neighbourhood of an analytic
set H, then µ(Ht) " tα for t > 0 and for some constant α > 0. This property is a
consequence of the fact that µ is moderate.

We also have the following version of Theorem 1.92. In the proof, one uses
Proposition 2.21 instead of Proposition 1.51.

Theorem 2.42. Let f : U →V be a polynomial-like map with large topological de-
gree dt > 1 and µ its equilibrium measure. Then (U,µ , f ) is measurably conjugate
to a one-sided dt-shift.

Exercise 2.43. Assume that for every positive closed (1,1)-current S on V we have
limsup‖( f n)∗(S)‖1/n < dt . Show that µ is PB and deduce that d∗

k−1 < dt . Hint:
write S = ddcϕ .

Exercise 2.44. Let ν be a positive measure with compact support in C. Prove that
ν is moderate if and only if there are positive constants α and c such that for every
disc D of radius r, ν(D) ≤ crα . Give an example showing that this condition is not
sufficient in C2.
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2.5 Holomorphic Families of Maps

In this paragraph, we consider polynomial-like maps fs : Us → Vs depending
holomorphically on a parameter s ∈ Σ . We will show that the Green measure
µs of fs depends “holomorphically” on s and then we study the dependence of the
Lyapounov exponents on the parameters. Since the problems are local, we assume
for simplicity that Σ is a ball in Cl . Of course, we assume that Us and Vs depend
continuously on s. Observe that if we replace Vs with a convex open set V ′

s ⊂ Vs
and Us by f−1

s (V ′
s ) with Vs \V ′

s small enough, the map fs is still polynomial-like.
So, for simplicity, assume that V := Vs is independent of s. Let UΣ := ∪s{s}×Us.
This is an open set in VΣ := Σ ×V . Define the holomorphic map F : UΣ → VΣ
by F(s,z) := (s, fs(z)). This map is proper. By continuity, the topological degree
dt of fs is independent of s. So, the topological degree of F is also dt . Define
KΣ := ∩n≥0F−n(VΣ ). Then KΣ is closed in UΣ . If π : Σ ×Ck → Σ is the canonical
projection, then π is proper on KΣ and Ks := KΣ ∩π−1(s) is the filled Julia set of fs.

It is not difficult to show that Ks depends upper semi-continuously on s with
respect to the Hausdorff metric on compact sets of V . This means that if Ws0 is
a neighbourhood of Ks0 , then Ks is contained in Ws0 for s closed enough to s0.
We will see that for maps with large topological degree, s .→ µs is continuous
in a strong sense. However, in general, the Julia set Js, i.e. the support of the
equilibrium measure µs, does not depend continuously on s.

In our context, the goal is to construct and to study currents which measure the
bifurcation, i.e. the discontinuity of s .→ Js. We have the following result due to
Pham [PH].

Proposition 2.45. Let ( fs)s∈Σ be as above. Then, there is a positive closed current
R of bidegree (k,k), supported on KΣ such that the slice 〈R,π ,s〉 is equal to the
equilibrium measure µs of fs for s ∈ Σ . Moreover, if ϕ is a p.s.h. function on a
neighbourhood of KΣ , then the function s .→ 〈µs,ϕ(s, ·)〉 is either equal to −∞ or
is p.s.h. on Σ .

Proof. Let Ω be a smooth probability measure with compact support in V . Define
the positive closed (k,k)-currentΘ on Σ ×V byΘ := τ∗(Ω) where τ : Σ ×V → V
is the canonical projection. Observe that the slice 〈Θ ,π ,s〉 coincides with Ω on
{s}×V , since Ω is smooth. Define Θn := d−n

t (Fn)∗(Θ). The slice 〈Θn,π ,s〉 can
be identified with d−n

t ( f n
s )∗(Ω) on {s}×V . This is a smooth probability measure

which tends to µs when n goes to infinity.
Since the problem is local for s, we can assume that all the forms Θn are sup-

ported on Σ ×K for some compact subset K of V . As we mentioned in Appendix
A.3, since these forms have slice mass 1, they belong to a compact family of cur-
rents. Therefore, we can extract a sequenceΘni which converges to some current R
with slice mass 1. We want to prove that 〈R,π ,s〉 = µs.

Let ϕ be a smooth p.s.h. function on a neighbourhood of KΣ . So, for n large
enough, ϕ is defined on the support of Θn (we reduce Σ if necessary). By slic-
ing theory, π∗(Θni ∧ϕ) is equal to the p.s.h. function ψni(s) := 〈Θni ,π ,s〉(ϕ) and
π∗(R ∧ ϕ) is equal to the p.s.h. function ψ(s) := 〈R,π ,s〉(ϕ) in the sense of
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currents. By definition of R, since π∗ is continuous on currents supported on Σ×K,
ψni converge to ψ in L1

loc(Σ). On the other hand, 〈Θni ,π ,s〉 converge to µs. So, the
functionψ ′(s) := limψni(s) = 〈µs,ϕ〉 is equal toψ(s) almost everywhere. Since ψni

and ψ are p.s.h., the Hartogs’ lemma implies that ψ ′ ≤ ψ . We show the inequality
ψ ′(s) ≥ ψ(s).

The function ψ is p.s.h., hence it is strongly upper semi-continuous. Therefore,
there is a sequence (sn) converging to s such that ψ ′(sn) = ψ(sn) and ψ(sn) con-
verge to ψ(s). Up to extracting a subsequence, we can assume that µsn converge
to some probability measure µ ′

s. By continuity, µ ′
s is totally invariant under fs. We

deduce from Proposition 2.13 that 〈µ ′
s,ϕ(s, ·)〉 ≤ 〈µs,ϕ(s, ·)〉. The first integral

is equal to ψ(s), the second one is equal to ψ ′(s). Therefore, ψ(s) ≤ ψ ′(s). The
identity 〈R,π ,s〉 = µs follows.

The second assertion in the proposition is also a consequence of the above
arguments. This is clear when ϕ is smooth. The general case is deduced using an
approximation of ϕ by a decreasing sequence of smooth p.s.h. functions. +,

Let Jac(F) denote the Jacobian of F with respect to the standard volume form
on Σ ×Ck. Its restriction to π−1(s) is the Jacobian Jac( fs) of fs. Since Jac(F) is a
p.s.h. function, we can apply the previous proposition and deduce that the function
Lk(s) := 1

2 〈µs, logJac( fs)〉 is p.s.h. on Σ . Indeed, by Theorem 2.16, this function is
bounded from below by 1

2 logdt , hence it is not equal to −∞. By Oseledec’s theorem
1.119, Lk(s) is the sum of the Lyapounov exponents of fs. We deduce the following
result of [DS1].

Corollary 2.46. Let ( fs)s∈Σ be as above. Then, the sum of the Lyapounov exponents
associated to the equilibrium measure µs of fs is a p.s.h. function on s. In particular,
it is upper semi-continuous.

Pham defined in [PH] the bifurcation (p, p)-currents by Bp := (ddcLk)p for
1 ≤ p ≤ dimΣ . The wedge-product is well-defined since Lk is locally bounded: it is
bounded from below by 1

2 logdt . Very likely, these currents play a crucial role in the
study of bifurcation as we see in the following observation. Assume that the critical
set of fs0 does not intersect the filled Julia set Ks0 for some s0 ∈ Σ . Since the filled
Julia sets Ks vary upper semi-continuously in the Hausdorff metric, logJac(F) is
pluriharmonic near {s0}×Ks0. It follows that Lk is pluriharmonic and Bp = 0 in a
neighbourhood of s0

8. On the other hand, using Kobayashi metric, it is easy to show
that f is uniformly hyperbolic on Ks for s close to s0. It follows that Ks = Js and
s .→ Js is continuous near s0, see [FS6].

Note that Lk is equal in the sense of currents to π∗(logJac(F)∧R), where R is
the current in Proposition 2.45. Therefore, B can be obtained using the formula

B = ddcπ∗(logJac(F)∧R) = π∗([CF ]∧R),

since ddc log |Jac(F)| = [CF ], the current of integration on the critical set CF of F .
We also have the following property of the function Lk.

8 This observation was made by the second author for the family z2 + c, with c ∈ C. He showed
that the bifurcation measure is the harmonic measure associated to the Mandelbrot set [SI].



Dynamics in Several Complex variables 259

Theorem 2.47. Let ( fs)s∈Σ be a family of polynomial-like maps as above. Assume
that fs0 has a large topological degree for some s0 ∈ Σ . Then Lk is Hölder con-
tinuous in a neighbourhood of s0. In particular, the bifurcation currents Bp are
moderate for 1 ≤ p ≤ dimΣ .

Let Λs denote the Perron-Frobenius operator associated to fs. For any Borel set
B, denote by ΩB the standard volume form on Ck restricted to B. We first prove
some preliminary results.

Lemma 2.48. Let W be a neighbourhood of the filled Julia set Ks0 of fs0 . Then,
there is a neighbourhood Σ0 of s0 such that 〈µs,ϕ〉 depends continuously on (s,ϕ)
in Σ0 ×PSH(W ).

Proof. We first replace Σ with a neighbourhoodΣ0 of s0 small enough. So, for every
s ∈ Σ , the filled Julia set of fs is contained in U := f−1

s0
(V ) and in W . We also reduce

the size of V in order to assume that fs is polynomial-like on a neighbourhood of
U with values in a neighbourhood V ′ of V . Moreover, since 〈µs,ϕ〉 = 〈µs,Λs(ϕ)〉
and Λs(ϕ) depends continuously on (s,ϕ) in Σ ×PSH(W ), we can replace ϕ with
ΛN

s (ϕ) with N large enough and s ∈ Σ , in order to assume that W =V . Finally, since
Λs(ϕ) is defined on V ′, it is enough to prove the continuity for ϕ p.s.h. on V such
that ϕ ≤ 1 and 〈ΩU ,ϕ〉 ≥ 0. Denote by P the family of such functions ϕ . Since µs0

is PC, we have |〈µs0 ,ϕ〉| ≤A for some constant A≥ 1 and for ϕ ∈P . Let P ′ denote
the family of p.s.h. functions ψ such that ψ ≤ 2A and 〈µs0 ,ψ〉 = 0. The function
ϕ ′ := ϕ−〈µs0 ,ϕ〉 belongs to this family. Observe that P ′ is bounded and therefore
if A′ ≥ 1 is a fixed constant large enough, we have |〈ΩU ,ψ〉| ≤ A′ for ψ ∈ P ′.

Fix an integer N large enough. By Theorem 2.33, ΛN
s0

(ϕ ′) ≤ 1/8 on V ′ and
|〈ΩU ,ΛN

s0
(ϕ ′)〉| ≤ 1/8 for ϕ ′ as above. We deduce that 2ΛN

s0
(ϕ ′)−〈ΩU ,2ΛN

s0
(ϕ ′)〉

is a function in P , smaller than 1/2 on V ′. This function differs from 2ΛN
s0

(ϕ) by a
constant. So, it is equal to 2ΛN

s0
(ϕ)−〈ΩU ,2ΛN

s0
(ϕ)〉. When Σ0 is small enough, by

continuity, the operator Ls(ϕ) := 2ΛN
s (ϕ)−〈ΩU ,2ΛN

s (ϕ)〉 preserves P for s ∈ Σ0.
Therefore, since Λs preserves constant functions, we have

ΛmN
s (ϕ) = Λ (m−1)N

s
[
〈ΩU ,ΛN

s (ϕ)〉+ 2−1Ls(ϕ)
]

= 〈ΩU ,ΛN
s (ϕ)〉+ 2−1Λ (m−1)N

s (Ls(ϕ)).

By induction, we obtain

ΛmN
s (ϕ) = 〈ΩU ,ΛN

s (ϕ)〉+ · · ·+ 2−m+1〈ΩU ,ΛN
s (Lm−1

s (ϕ))〉+ 2−mLm
s (ϕ)

=
〈
ΩU ,ΛN

s
[
ϕ+ · · ·+ 2−m+1Lm−1

s (ϕ)
]〉

+ 2−mLm
s (ϕ)

=
〈
d−N

t ( f N
s )∗(ΩU ),ϕ+ · · ·+ 2−m+1Lm−1

s (ϕ)
〉
+ 2−mLm

s (ϕ).

We deduce from the above property of Ls that the last term converges uniformly to
0 when m goes to infinity. The sum in the first term converges normally to the p.s.h.
function ∑m≥1 2−m+1Lm−1

s (ϕ), which depends continuously on (s,ϕ). Therefore,
ΛmN

s (ϕ) converge to a constant which depends continuously on (s,ϕ). But we know
that the limit is 〈µs,ϕ〉. The lemma follows. +,
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Using the same approach as in Theorem 2.34, we prove the following result.

Theorem 2.49. Let fs, s0 and W be as in Theorem 2.47 and Lemma 2.48. Let K be
a compact subset of W such that f−1

s0
(K) is contained in the interior of K. There

is a neighbourhood Σ0 of s0 such that if P is a bounded family of p.s.h. functions
on W , then (s,ϕ) .→ 〈µs,ϕ〉 is Hölder continuous on Σ0 ×P with respect to the
pseudo-distance distL1(K) on P .

Proof. We replace Σ with Σ0 as in Lemma 2.48. It is not difficult to check that
(s,ϕ) .→ (s,Λs(ϕ)) is locally Lipschitz with respect to distL1(K). So, replacing (s,ϕ)
by (s,ΛN

s (ϕ)) with N large enough allows to assume that W = V . Let P̂ be the
set of (s,ϕ) in Σ × PSH(V ) such that ϕ ≤ 1 and 〈µs,ϕ〉 ≥ 0. By Lemma 2.48,
such functions ϕ belong to a compact subset of PSH(V ). It is enough to prove that
(s,ϕ) .→ 〈µs,ϕ〉 is Hölder continuous on P̂ .

Let D̂ denote the set of (s,ϕ −Λs(ϕ)) with (s,ϕ) ∈ P̂ . Consider the operator
Λ̂(s,ψ) := (s,λ−1Λs(ψ)) on D as in Theorem 2.34 where λ < 1 is a fixed constant
close enough to 1. Theorem 2.33 and the continuity in Lemma 2.48 imply that Λ̂
preserves D̂ . Therefore, we only have to follow the arguments in Theorem 2.34. +,

Proof of Theorem 2.47. We replace Σ with a small neighbourhood of s0. Observe
that logJac( fs), s ∈ Σ , is a bounded family of p.s.h. functions on U . By Theorem
2.49, it is enough to show that s .→ logJac( fs) is Hölder continuous with respect to
distL1(K).

We also deduce from Theorem A.22 that 〈ΩK ,eλ | logJac( fs)|〉 ≤A for some positive
constants λ and A. Reducing V and Σ allows to assume that Jac(F), their derivatives
and the vanishing order of Jac(F) are bounded on Σ ×U by some constant m.

Fix a constant α > 0 small enough and a constant A > 0 large enough. Define
ψ(s) := 〈ΩK , logJac( fs)〉. Consider s and t in Σ such that r := ‖s−t‖ is smaller than
a fixed small constant. We will compare |ψ(s)−ψ(t)| with rλα in order to show that
ψ is Hölder continuous with exponent λα . Define S := {z ∈ U, Jac( fs) < 2r2α}.
We will bound separately

〈ΩK\S, logJac( fs)− logJac( ft )〉

and
〈ΩK∩S, logJac( fs)− logJac( ft )〉.

Note that ψ(s)−ψ(t) is the sum of the above two integrals.
Consider now the integral on K \ S. The following estimates are only valid on

K \ S. Since the derivatives of Jac(F) is bounded, we have Jac( ft ) ≥ r2α . It follows
that the derivatives on t of logJac( ft ) is bounded by Ar−2α . We deduce that

| logJac( fs)− logJac( ft )| ≤ Ar1−2α .

Therefore,

|〈ΩK\S, logJac( fs)− logJac( ft )〉| ≤ ‖ΩK\S‖Ar1−2α ≤ rλα .
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We now estimate the integral on K ∩S. Its absolute value is bounded by

〈ΩK∩S, | logJac( fs)|〉+ 〈ΩK∩S, | logJac( ft)|〉.

We deduce from the estimate 〈ΩK ,eλ | logJac( fs)|〉 ≤ A that volume(K ∩ S) ≤ Ar2λα .
Therefore, by Cauchy-Schwarz’s inequality, we have

〈ΩK∩S, | logJac( fs)|〉 " volume(K ∩S)1/2〈ΩK , | logJac( fs)|2
〉1/2

" rλα〈ΩK ,eλ | logJac( fs)|〉1/2 " rλα .

The estimate holds for ft instead of fs. Hence, ψ is Hölder continuous. The fact that
Bp are moderate follows from Theorem A.34. #

The following result of Pham generalizes Corollary 2.46 and allows to define
other bifurcation currents by considering ddcLp or their wedge-products [PH].

Theorem 2.50. Let ( fs)s∈Σ be a holomorphic family of polynomial-like maps as
above. Let χ1(s) ≥ ·· · ≥ χk(s) be the Lyapounov exponents of the equilibrium
measure µs of fs. Then, for 1 ≤ p ≤ k, the function

Lp(s) := χ1(s)+ · · ·+ χp(s)

is p.s.h. on Σ . In particular, Lp is upper semi-continuous.

Proof. Observe that Lp(s) ≥ p
k Lk(s) ≥ p

2k logdt . We identify the tangent space of
V at any point with Ck. So, the differential D fs(z) of fs at a point z ∈ Us is a
linear self-map on Ck which depends holomorphically on (s,z). It induces a linear
self-map on the exterior product

∧p Ck that we denote by Dp fs(z). This map de-
pends holomorphically on (s,z). In the standard coordinate system on

∧p Ck, the
function (s,z) .→ log‖Dp fs(z)‖ is p.s.h. on UΣ . By Proposition 2.45, the function
ψ1(s) := 〈µs, log‖Dp fs‖〉 is p.s.h. or equal to −∞ on Σ . Define in the same way the
functions ψn(s) := 〈µs, log‖Dp f n

s ‖〉 associated to the iterate f n
s of fs. We have

Dp f n+m
s (z) = Dp f m

s ( f n
s (z))◦Dp f n

s (z).

Hence,
‖Dp f n+m

s (z)‖ ≤ ‖Dp f m
s ( f n

s (z))‖ ‖Dp f n
s (z)‖.

We deduce using the invariance of µs that

ψm+n(s) ≤ ψm(s)+ψn(s).

Therefore, the sequence n−1ψn decreases to infn n−1ψn. So, the limit is p.s.h. or
equal to −∞. On the other hand, Oseledec’s theorem 1.119 implies that the limit is
equal to Lp(s) which is a positive function. It follows that Lp(s) is p.s.h. +,

Consider now the family fs of endomorphisms of algebraic degree d ≥ 2 of
Pk with s ∈ Hd(Pk). We can lift fs to polynomial-like maps on Ck+1 and ap-
ply the above results. The construction of the bifurcation currents Bp can be



262 Tien-Cuong Dinh and Nessim Sibony

obtained directly using the Green measures of fs. This was done by Bassanelli-
Berteloot in [BB]. They studied some properties of the bifurcation currents and
obtained nice formulas for that currents in terms of the Green functions. We
also refer to DeMarco, Dujardin-Favre, McMullen, Milnor, Sibony and Silverman
[DM, DM1, DF, MM, MI1, SI, SJ] for results in dimension one.

Exercise 2.51. If f is an endomorphism in Hd(Pk), denote by Lk( f ) the sum of the
Lyapounov exponents of the equilibrium measure. Show that f .→ Lk( f ) is locally
Hölder continuous on Hd(Pk). Deduce that the bifurcation currents are moderate.
Hint: use that the lift of f to Ck+1 has always a Lyapounov exponent equal to logd.

Exercise 2.52. Find a family ( fs)s∈Σ such that Js does not vary continuously.

Exercise 2.53. A family (Xs)s∈Σ of compact subsets in V is lower semi-continuous
at s0 if for every ε > 0, Xs0 is contained in the ε-neighbourhood of Xs when s is close
enough to s0. If (νs)s∈Σ is a continuous family of probability measures on V , show
that s .→ supp(νs) is lower semi-continuous. If ( fs)s∈Σ is a holomorphic family of
polynomial-like maps, deduce that s .→ Js is lower semi-continuous. Show that if
Js0 = Ks0 , then s .→ Js is continuous at s0 for the Hausdorff metric.

Exercise 2.54. Assume that fs0 is of large topological degree. Let δ > 0 be a con-
stant small enough. Using the continuity of s .→ µs, show that if ps0 is a repelling
fixed point in Js0 for fs0 , there are repelling fixed points ps in Js for fs, with
|s− s0| < δ , such that s .→ ps is holomorphic. Suppose s .→ Js is continuous with
respect to the Hausdorff metric. Construct a positive closed current R supported
on ∪|s−s0|<δ{s}×Js with slices µs. Deduce that if Js0 does not contain critical
points of fs0 then s .→ Lk(s) is pluriharmonic near s0.

Notes. Several results in this section still hold for larger classes of polynomial-like maps. For
example, the construction of the equilibrium measure is valid for a manifold V admitting a smooth
strictly p.s.h. function. The ddc-method was originally introduced for polynomial-like maps.
However, we have seen that it is also effective for endomorphisms of Pk . In a forthcoming survey,
we will show that the method can be extended to other dynamical systems. Several statistical
properties obtained in this section are new.

Appendix: Currents and Pluripotential Theory

In this appendix, we recall some basic notions and results on complex geometry
and on currents in the complex setting. Most of the results are classical and their
proofs are not given here. In constrast, we describe in detail some notions in order to
help the reader who are not familiar with complex geometry or currents. The main
references for the abstract theory of currents are [CH, DR, FE, SC, WA]. The reader
will find in [DEM, GU, HO, LE, N] the basics on currents on complex manifolds.
We also refer to [DEM, GH, HB, VO] for the theory of compact Kähler manifolds.
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A.1 Projective Spaces and Analytic Sets

In this paragraph, we recall the definition of complex projective spaces. We then
discuss briefly compact Kähler manifolds, projective manifolds and analytic sets.

The complex projective space Pk is a compact complex manifold of dimension k.
It is obtained as the quotient of Ck+1 \{0} by the natural multiplicative action of C∗.
In other words, Pk is the parameter space of the complex lines passing through 0
in Ck+1. The image of a subspace of dimension p + 1 of Ck+1 is a submanifold
of dimension p in Pk, bi-holomorphic to Pp, and is called a projective subspace
of dimension p. Hyperplanes of Pk are projective subspaces of dimension k − 1.
The group GL(C,k + 1) of invertible linear endomorphisms of Ck+1 induces the
group PGL(C,k + 1) of automorphisms of Pk. It acts transitively on Pk and sends
projective subspaces to projective subspaces.

Let z = (z0, . . . ,zk) denote the standard coordinates of Ck+1. Consider the equiv-
alence relation: z ∼ z′ if there is λ ∈ C∗ such that z = λ z′. The projective space
Pk is the quotient of Ck+1 \ {0} by this relation. We can cover Pk by open sets Ui
associated to the open sets {zi "= 0} in Ck+1 \ {0}. Each Ui is bi-holomorphic to Ck

and (z0/zi, . . . ,zi−1/zi,zi+1/zi, . . . ,zk/zi) is a coordinate system on this chart. The
complement of Ui is the hyperplane defined by {zi = 0}. So, Pk can be considered
as a natural compactification of Ck. We denote by [z0 : · · · : zk] the point of Pk

associated to (z0, . . . ,zk). This expression is the homogeneous coordinates on Pk.
Projective spaces are compact Kähler manifolds. We will describe this notion later.

Let X be a complex manifold of dimension k. Let ϕ be a differential l-form on X .
In local holomorphic coordinates z = (z1, . . . ,zk), it can be written as

ϕ(z) = ∑
|I|+|J|=l

ϕIJdzI ∧dzJ ,

where ϕIJ are complex-valued functions, dzI := dzi1 ∧ . . .∧ dzip if I = (i1, . . . , ip),
and dzJ := dz j1 ∧ . . .∧dz jq if J = ( j1, . . . , jq). The conjugate of ϕ is

ϕ(z) := ∑
|I|+|J|=l

ϕ IJdzI ∧dzJ .

The form ϕ is real if and only if ϕ = ϕ .
We say that ϕ is a form of of bidegree (p,q) if ϕIJ = 0 when (|I|, |J|) "= (p,q).

The bidegree does not depend on the choice of local coordinates. Let T C
X denote the

complexification of the tangent bundle of X . The complex structure on X induces a
linear endomorphism J on the fibers of T C

X such that J 2 = −id. This endomor-
phism induces a decomposition of T C

X into the direct sum of two proper sub-bundles
of dimension k: the holomorphic part T 1,0

X associated to the eigenvalue i of J , and
the anti-holomorphic part T 0,1

X associated to the eigenvalue −i. Let Ω 1,0
X and Ω 0,1

X

denote the dual bundles of T 1,0
X and T 0,1

X . Then, (p,q)-forms sections of the vector
bundle

∧pΩ 1,0 ⊗
∧qΩ 0,1.
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If ϕ is a (p,q)-form then the differential dϕ is the sum of a (p + 1,q)-form and
a (p,q + 1)-form. We then denote by ∂ϕ the part of bidegree (p + 1,q) and ∂ϕ the
the part of bidegree (p,q + 1). The operators ∂ and ∂ extend linearly to arbitrary
forms ϕ . The operator d is real, i.e. it sends real forms to real forms but ∂ and ∂ are
not real. The identity d ◦ d = 0 implies that ∂ ◦ ∂ = 0, ∂ ◦ ∂ = 0 and ∂∂ + ∂∂ = 0.
Define dc :=

√
−1

2π (∂ − ∂ ). This operator is real and satisfies ddc =
√
−1
π ∂∂ . Note

that the above operators commute with the pull-back by holomorphic maps. More
precisely, if τ : X1 → X2 is a holomorphic map between complex manifolds and ϕ
is a form on X2 then d f ∗(ϕ) = f ∗(dϕ), ddc f ∗(ϕ) = f ∗(ddcϕ), etc. Recall that the
form ϕ is closed (resp. ∂ -closed, ∂ -closed, ddc-closed) if dϕ (resp. ∂ϕ , ∂ϕ , ddcϕ)
vanishes. The form ϕ is exact (resp. ∂ -exact, ∂ -exact, ddc-exact) if it is equal to the
differential dψ (resp. ∂ψ , ∂ψ , ddcψ) of a form ψ . Clearly, exact forms are closed.

A smooth (1,1)-form ω on X is Hermitian if it can be written in local
coordinates as

ω(z) =
√
−1 ∑

1≤i, j≤k
αi j(z)dzi ∧dz j,

where αi j are smooth functions such that the matrix (αi j) is Hermitian. We consider
a form ω such that the matrix (αi j) is positive definite at every point. It is strictly
positive in the sense that we will introduce later. If a is a point in X , we can find
local coordinates z such that z = 0 at a and ω is equal near 0 to the Euclidean form
ddc‖z‖2 modulo a term of order ‖z‖. The form ω is always real and induces a norm
on the tangent spaces of X . So, it defines a Riemannian metric on X . We say that ω
is a Kähler form if it is a closed positive definite Hermitian form. In this case, one
can find local coordinates z such that z = 0 at a and ω is equal near 0 to ddc‖z‖2

modulo a term of order ‖z‖2. So, at the infinitesimal level, a Kähler metric is close to
the Euclidean one. This is a crucial property in Hodge theory in the complex setting.

Consider now a compact complex manifold X of dimension k. Assume that
X is a Kähler manifold, i.e. it admits a Kähler form ω . Recall that the de Rham
cohomology group Hl(X ,C) is the quotient of the space of closed l-forms by the
subspace of exact l-forms. This complex vector space is of finite dimension. The
real groups Hl(X ,R) are defined in the same way using real forms. We have

Hl(X ,C) = Hl(X ,R)⊗R C.

If α is a closed l-form, its class in Hl(X ,C) is denoted by [α]. The group H0(X ,C)
is just the set of constant functions. So, it is isomorphic to C. The group H2k(X ,C)
is also isomorphic to C. The isomorphism is given by the canonical map [α] .→

∫
X α .

For l,m such that l + m ≤ 2k, the cup-product

!: Hl(X ,C)×Hm(X ,C) → Hl+m(X ,C)

is defined by [α] ! [β ] := [α ∧ β ]. The Poincaré duality theorem says that the
cup-product is a non-degenerated bilinear form when l + m = 2k. So, it defines an
isomorphism between Hl(X ,C) and the dual of H2k−l(X ,C).



Dynamics in Several Complex variables 265

Let H p,q(X ,C), 0 ≤ p,q ≤ k, denote the subspace of H p+q(X ,C) generated
by the classes of closed (p,q)-forms. We call H p,q(X ,C) the Hodge cohomology
group. Hodge theory shows that

Hl(X ,C) =
⊕

p+q=l

H p,q(X ,C) and Hq,p(X ,C) = H p,q(X ,C).

This, together with the Poincaré duality, induces a canonical isomorphism between
H p,q(X ,C) and the dual space of Hk−p,k−q(X ,C). Define for p = q

H p,p(X ,R) := H p,p(X ,C)∩H2p(X ,R).

We have
H p,p(X ,C) = H p,p(X ,R)⊗R C.

Recall that the Dolbeault cohomology group H p,q
∂

(X) is the quotient of the space

of ∂ -closed (p,q)-forms by the subspace of ∂ -exact (p,q)-forms. Observe that a
(p,q)-form is d-closed if and only if it is ∂ -closed and ∂ -closed. Therefore, there
is a natural morphism between the Hodge and the Dolbeault cohomology groups.
Hodge theory asserts that this is in fact an isomorphism: we have

H p,q(X ,C) 4 H p,q
∂

(X).

The result is a consequence of the following theorem, the so-called ddc-lemma, see
e.g. [DEM, VO].

Theorem A.1. Let ϕ be a smooth d-closed (p,q)-form on X. Then ϕ is ddc-exact if
and only if it is d-exact (or ∂ -exact or ∂ -exact).

The projective space Pk admits a Kähler form ωFS, called the Fubini-Study form.
It is defined on the chart Ui by

ωFS := ddc log

(
k

∑
j=0

∣∣∣
z j

zi

∣∣∣
2
)

.

In other words, if π : Ck+1 \ {0} → Pk is the canonical projection, then ωFS is
defined by

π∗(ωFS) := ddc log

(
k

∑
i=0

∣∣zi|2
)

.

One can check that ωk
FS is a probability measure on Pk. The cohomology groups

of Pk are very simple. We have H p,q(Pk,C) = 0 for p "= q and H p,p(Pk,C) 4 C.
The groups H p,p(Pk,R) and H p,p(Pk,C) are generated by the class of ω p

FS. Sub-
manifolds of Pk are Kähler, as submanifolds of a Kähler manifold. Chow’s theorem
says that such a manifold is algebraic, i.e. it is the set of common zeros of a finite
family of homogeneous polynomials in z. A compact manifold is projective if it is
bi-holomorphic to a submanifold of a projective space. Their cohomology groups
are in general very rich and difficult to describe.
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A useful result of Blanchard [BN] says that the blow-up of a compact
Kähler manifold along a submanifold is always a compact Kähler manifold. The
construction of the blow-up is as follows. Consider first the case of open sets in Ck

with k ≥ 2. Observe that Ck is the union of the complex lines passing through 0
which are parametrized by the projective space Pk−1. The blow-up Ĉk of Ck at 0 is
obtained by separating these complex lines, that is, we keep Ck \ {0} and replace
0 with a copy of Pk−1. More precisely, if z = (z1, . . . ,zk) denote the coordinates of
Ck and [w] = [w1 : · · · : wk] are homogeneous coordinates of Pk−1, then Ĉk is the
submanifold of Ck ×Pk−1 defined by the equations ziw j = z jwi for 1 ≤ i, j ≤ k. If
U is an open set in Ck containing 0, the blow-up Û of U at 0 is defined by π−1(U)
where π : Ĉk → Ck is the canonical projection.

If U is a neighbourhood of 0 in Ck−p, p ≤ k−2, and V is an open set in Cp, then
the blow-up of U ×V along {0}×V is equal to Û ×V . Consider now a submanifold
Y of X of dimension p ≤ k−2. We cover X by charts which either do not intersect
Y or are of the type U ×V , where Y is identified with {0}×V . The blow-up X̂ is
obtained by sticking the charts outside Y with the blow-ups of charts which inter-
sect Y . The natural projection π : X̂ → X defines a bi-holomorphic map between
X̂ \π−1(Y ) and X \Y . The set π−1(Y ) is a smooth hypersurface, i.e. submanifold of
codimension 1; it is called the exceptional hypersurface. Blow-up may be defined
using the local ideals of holomorphic functions vanishing on Y . The blow-up of a
projective manifold along a submanifold is a projective manifold.

We now recall some facts on analytic sets, see [GU, N]. Let X be an arbitrary
complex manifold of dimension k9. Analytic sets of X can be seen as submanifolds
of X , possibly with singularities. Analytic sets of dimension 0 are locally finite sub-
sets, those of dimension 1 are (possibly singular) Riemann surfaces. For example,
{z2

1 = z3
2} is an analytic set of C2 of dimension 1 with a singularity at 0. Chow’s

theorem holds for analytic sets: any analytic set in Pk is the set of common zeros of
a finite family of homogeneous polynomials.

Recall that an analytic set Y of X is locally the set of common zeros of holomor-
phic functions: for every point a ∈ X there is a neighbourhood U of a and holomor-
phic functions fi on U such that Y ∩U is the intersection of { fi = 0}. We can choose
U so that Y ∩U is defined by a finite family of holomorphic functions. Analytic sets
are closed for the usual topology on X . Local rings of holomorphic functions on X
induce local rings of holomorphic functions on Y . An analytic set Y is irreducible if
it is not a union of two different non-empty analytic sets of X . A general analytic set
Y can be decomposed in a unique way into a union of irreducible analytic subsets
Y = ∪Yi, where no component Yi is contained in another one. The decomposition is
locally finite, that is, given a compact set K in X , only finitely many Yi intersect K.

Any increasing sequence of irreducible analytic subsets of X is stationary. A de-
creasing sequence (Yn) of analytic subsets of X is always locally stationary, that is,
for any compact subset K of X , the sequence (Yn ∩K) is stationary. Here, we do
not suppose Yn irreducible. The topology on X whose closed sets are exactly the
analytic sets, is called the Zariski topology. When X is connected, non-empty open

9 We often assume implicitely that X is connected for simplicity.
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Zariski sets are dense in X for the usual topology. The restriction of the Zariski
topology on X to Y is also called the Zariski topology of Y . When Y is irreducible,
the non-empty Zariski open subsets are also dense in Y but this is not the case for
reducible analytic sets.

There is a minimal analytic subset sing(Y ) in X such that Y \ sing(Y ) is a
(smooth) complex submanifold of X \ sing(Y ), i.e. a complex manifold which is
closed and without boundary in X \ sing(Y ). The analytic set sing(Y ) is the singular
part of Y . The regular part of Y is denoted by reg(Y ); it is equal to Y \ sing(Y ). The
manifold reg(Y ) is not necessarily irreducible; it may have several components. We
call dimension of Y , dim(Y ), the maximum of the dimensions of these components;
the codimension codim(Y ) of Y in X is the integer k− dim(Y ). We say that Y is a
proper analytic set of X if it has positive codimension. When all the components of
Y have the same dimension, we say that Y is of pure dimension or of pure codimen-
sion. When sing(Y ) is non-empty, its dimension is always strictly smaller than the
dimension of Y . We can again decompose sing(Y ) into regular and singular parts.
The procedure can be repeated less than k times and gives a stratification of Y into
disjoint complex manifolds. Note that Y is irreducible if and only if reg(Y ) is a
connected manifold. The following result is due to Wirtinger.

Theorem A.2 (Wirtinger). Let Y be analytic set of pure dimension p of a Hermitian
manifold (X ,ω). Then the 2p-dimensional volume of Y on a Borel set K is equal to

volume(Y ∩K) =
1
p!

∫

reg(Y )∩K
ω p.

Here, the volume is with respect to the Riemannian metric induced by ω .

Let Dk denote the unit polydisc {|z1| < 1, . . . , |zk| < 1} in Ck. The following
result describes the local structure of analytic sets.

Theorem A.3. Let Y be an analytic set of pure dimension p of X. Let a be a point
of Y . Then there is a holomorphic chart U of X, bi-holomorphic to Dk, with local
coordinates z = (z1, . . . ,zk), such that z = 0 at a, U is given by {|z1|< 1, . . . , |zk|< 1}
and the projection π : U → Dp, defined by π(z) := (z1, . . . ,zp), is proper on Y ∩U.
In this case, there is a proper analytic subset S of Dp such that π : Y ∩U \π−1(S)→
Dp \ S is a finite covering and the singularities of Y are contained in π−1(S).

Recall that a holomorphic map τ : X1 → X2 between complex manifolds of the
same dimension is a covering of degree d if each point of X2 admits a neighbour-
hood V such that τ−1(V ) is a disjoint union of d open sets, each of which is sent
bi-holomorphically to V by τ . Observe the previous theorem also implies that the
fibers of π : Y ∩U → Dp are finite and contain at most d points if d is the degree of
the covering. We can reduce U in order to have that a is the unique point in the fiber
π−1(0)∩Y . The degree d of the covering depends on the choice of coordinates and
the smallest integer d obtained in this way is called the multiplicity of Y at a and
is denoted by mult(Y,a). We will see that mult(Y,a) is the Lelong number at a of
the positive closed current associated to Y . In other words, if Br denotes the ball of
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center a and of radius r, then the ratio between the volume of Y ∩Br and the volume
of a ball of radius r in Cp decreases to mult(Y,a) when r decreases to 0.

Let τ : X1 → X2 be an open holomorphic map between complex manifolds of the
same dimension. Applying the above result to the graph of τ , we can show that for
any point a∈ X1 and for a neighbourhoodU of a small enough, if z is a generic point
in X2 close enough to τ(a), the number of points in τ−1(z)∩U does not depend on z.
We call this number the multiplicity or the local topological degree of τ at a. We say
that τ is a ramified covering of degree d if τ is open, proper and each fiber of τ con-
tains exactly d points counted with multiplicity. In this case, if Σ2 is the set of critical
values of τ and Σ1 := τ−1(Σ2), then τ : X1 \Σ1 → X2 \Σ2 is a covering of degree d.

We recall the notion of analytic space which generalizes complex manifolds and
their analytic subsets. An analytic space of dimension ≤ p is defined as a complex
manifold but a chart is replaced with an analytic subset of dimension ≤ p in an
open set of a complex Euclidean space. As in the case of analytic subsets, one can
decompose analytic spaces into irreducible components and into regular and singu-
lar parts. The notions of dimension, of Zariski topology and of holomorphic maps
can be extended to analytic spaces. The precise definition uses the local ring of
holomorphic functions, see [GU,N]. An analytic space is normal if the local ring of
holomorphic functions at every point is integrally closed. This is equivalent to the
fact that for U open in Z holomorphic functions on reg(Z)∩U which are bounded
near sing(Z)∩U , are holomorphic on U . In particular, normal analytic spaces are
locally irreducible. A holomorphic map f : Z1 → Z2 between complex spaces is a
continuous map which induces morphisms from local rings of holomorphic func-
tions on Z2 to the ones on Z1. The notions of ramified covering, of multiplicity and
of open maps can be extended to normal analytic spaces. We have the following
useful result where Z̃ is called normalization of Z.

Theorem A.4. Let Z be an analytic space. Then there is a unique, up to a bi-
holomorphic map, normal analytic space Z̃ and a finite holomorphic map π : Z̃ → Z
such that

1. π−1(reg(Z)) is a dense Zariski open set of Z̃ and π defines a bi-holomorphic
map between π−1(reg(Z)) and reg(Z);

2. If τ : Z′ → Z is a holomorphic map between analytic spaces, then there is a
unique holomorphic map h : Z′ → Z̃ satisfying π ◦ h = τ .

In particular, holomorphic self-maps of Z can be lifted to holomorphic self-maps
of Z̃.

Example A.5. Let π : C→C2 be the holomorphic map given by π(t) = (t2, t3). This
map defines a normalization of the analytic curve {z3

1 = z2
2} in C2 which is singular

at 0. The normalization of the analytic set {z1 = 0}∪{z3
1 = z2

2} is the union of two
disjoint complex lines. The normalization of a complex curve (an analytic set of
pure dimension 1) is always smooth.
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The following desingularization theorem, due to Hironaka, is very useful.

Theorem A.6. Let Z be an analytic space. Then there is a smooth manifold Ẑ,
possibly reducible, and a holomorphic map π : Ẑ → Z such that π−1(reg(Z))
is a dense Zariski open set of Ẑ and π defines a bi-holomorphic map between
π−1(reg(Z)) and reg(Z).

When Z is an analytic subset of a manifold X , then one can obtain a map
π : X̂ → X using a sequence of blow-ups along the singularities of Z. The manifold
Ẑ is the strict transform of Z by π . The difference with the normalization of Z is
that we do not have the second property in Theorem A.4 but Ẑ is smooth.

Exercise A.7. Let X be a compact Kähler manifold of dimension k. Show that the
Betti number bl , i.e. the dimension of Hl(X ,R), is even if l is odd and does not
vanish if l is even.

Exercise A.8. Let Grass(l,k) denote the Grassmannian, i.e. the set of linear sub-
spaces of dimension l of Ck. Show that Grass(l,k) admits a natural structure of a
projective manifold.

Exercise A.9. Let X be a compact complex manifold of dimension ≥ 2 and
π : X̂ ×X → X × X the blow-up of X × X along the diagonal ∆ . Let Π1,Π2 de-
note the natural projections from X̂ ×X onto the two factors X of X ×X . Show that
Π1,Π2 and their restrictions to π−1(∆) are submersions.

Exercise A.10. Let E be a finite or countable union of proper analytic subsets of a
connected manifold X . Show that X \E is connected and dense in X for the usual
topology.

Exercise A.11. Let τ : X1 → X2 be a ramified covering of degree n. Let ϕ be a
function on X1. Define

τ∗(ϕ)(z) := ∑
w∈τ−1(z)

ϕ(w),

where the points in τ−1(z) are counted with multiplicity. If ϕ is upper semi-
continuous or continuous, show that τ∗(ϕ) is upper semi-continuous or continuous
respectively. Show that the result still holds for a general open map τ between
manifolds of the same dimension if ϕ has compact support in X1.

A.2 Positive Currents and p.s.h. Functions

In this paragraph, we introduce positive forms, positive currents and plurisubhar-
monic functions on complex manifolds. The concept of positivity and the notion
of plurisubharmonic functions are due to Lelong and Oka. The theory has many
applications in complex algebraic geometry and in dynamics.
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Let X be a complex manifold of dimension k and ω a Hermitian (1,1)-form on
X which is positive definite at every point. Recall that a current S on X , of degree
l and of dimension 2k− l, is a continuous linear form on the space D2k−l(X) of
smooth (2k − l)-forms with compact support in X . Its value on a (2k − l)-form
ϕ ∈ D2k−l(X) is denoted by S(ϕ) or more frequently by 〈S,ϕ〉. On a chart, S cor-
responds to a continuous linear form acting on the coefficients of ϕ . So, it can be
represented as an l-form with distribution coefficients. A sequence (Sn) of l-currents
converges to an l-current S if for every ϕ ∈ D2k−l(X), 〈Sn,ϕ〉 converge to 〈S,ϕ〉.
The conjugate of S is the l-current S defined by

〈S,ϕ〉 := 〈S,ϕ〉,

for ϕ ∈ D2k−l(X). The current S is real if and only if S = S.
The support of S is the smallest closed subset supp(S) of X such that 〈S,ϕ〉 = 0

when ϕ is supported on X \supp(S). The current S extends continuously to the space
of smooth forms ϕ such that supp(ϕ)∩ supp(S) is compact in X . If X ′ is a complex
manifold of dimension k′ with 2k′ ≥ 2k− l, and if τ : X → X ′ is a holomorphic map
which is proper on the support of S, we can define the push-forward τ∗(S) of S by τ .
This is a current τ∗(S) of the same dimension than S, i.e. of degree 2k′ − 2k + l,
which is supported on τ(supp(S)), it satisfies

〈τ∗(S),ϕ〉 := 〈S,τ∗(ϕ)〉

for ϕ ∈D2k−l(X ′). If X ′ is a complex manifold of dimension k′ ≥ k and if τ : X ′ →X
is a submersion, we can define the pull-back τ∗(S) of S by τ . This is an l-current
supported on τ−1(supp(S)), it satisfies

〈τ∗(S),ϕ〉 := 〈S,τ∗(ϕ)〉

for ϕ ∈ D2k′−l(X ′). Indeed, since τ is a submersion, the current τ∗(ϕ) is in fact a
smooth form with compact support in X ; it is given by an integral of ϕ on the fibers
of τ .

Any smooth differential l-formψ on X defines a current: it defines the continuous
linear form ϕ .→

∫
X ψ ∧ϕ on ϕ ∈ D2k−l(X). So, currents extend the notion of dif-

ferential forms. The operators d,∂ ,∂ on differential forms extend to currents. For
example, we have that dS is an (l + 1)-current defined by

〈dS,ϕ〉 := (−1)l+1〈S,dϕ〉

for ϕ ∈D2k−l−1(X). One easily check that when S is a smooth form, the above iden-
tity is a consequence of the Stokes’ formula. We say that S is of bidegree (p,q) and
of bidimension (k− p,k−q) if it vanishes on forms of bidegree (r,s) "= (k− p,k−q).
The conjugate of a (p,q)-current is of bidegree (q, p). So, if such a current is real,
we have necessarily p = q. Note that the push-forward and the pull-back by holo-
morphic maps commute with the above operators. They preserve real currents; the
push-forward preserves the bidimension and the pull-back preserves the bidegree.
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There are three notions of positivity which coincide for the bidegrees (0,0),
(1,1), (k − 1,k − 1) and (k,k). Here, we only use two of them. They are dual to
each other. A (p, p)-form ϕ is (strongly) positive if at each point, it is equal to a
combination with positive coefficients of forms of type

(
√
−1α1 ∧α1)∧ . . .∧ (

√
−1αp ∧α p),

where αi are (1,0)-forms. Any (p, p)-form can be written as a finite combination
of positive (p, p)-forms. For example, in local coordinates z, a (1,1)-form ω is
written as

ω =
k

∑
i, j=1

αi j
√
−1dzi ∧dz j,

where αi j are functions. This form is positive if and only if the matrix (αi j) is
positive semi-definite at every point. In local coordinates z, the (1,1)-form ddc‖z‖2

is positive. One can write dz1 ∧ dz2 as a combination of dz1 ∧ dz1, dz2 ∧ dz2,
d(z1 ± z2)∧d(z1 ± z2) and d(z1 ±

√
−1z2)∧d(z1 ±

√
−1z2). Hence, positive forms

generate the space of (p, p)-forms.
A (p, p)-current S is weakly positive if for every smooth positive (k− p,k− p)-

form ϕ , S∧ϕ is a positive measure and is positive if S∧ϕ is a positive measure
for every smooth weakly positive (k − p,k − p)-form ϕ . Positivity implies weak
positivity. These properties are preserved under pull-back by holomorphic sub-
mersions and push-forward by proper holomorphic maps. Positive and weakly
positive forms or currents are real. One can consider positive and weakly positive
(p, p)-forms as sections of some bundles of salient convex closed cones which are
contained in the real part of the vector bundle

∧pΩ 1,0 ⊗
∧pΩ 0,1.

The wedge-product of a positive current with a positive form is positive. The
wedge-product of a weakly positive current with a positive form is weakly posi-
tive. Wedge-products of weakly positive forms or currents are not always weakly
positive. For real (p, p)-currents or forms S, S′, we will write S ≥ S′ and S′ ≤ S
if S− S′ is positive. A current S is negative if −S is positive. A (p, p)-current or
form S is strictly positive if in local coordinates z, there is a constant ε > 0 such
that S ≥ ε(ddc‖z‖2)p. Equivalently, S is strictly positive if we have locally S ≥ εω p

with ε > 0.

Example A.12. Let Y be an analytic set of pure codimension p of X . Using the local
description of Y near a singularity in Theorem A.3 and Wirtinger’s theorem A.2,
one can prove that the 2(k− p)-dimensional volume of Y is locally finite in X . This
allows to define the following (p, p)-current [Y ] by

〈[Y ],ϕ〉 :=
∫

reg(Y )
ϕ

for ϕ in Dk−p,k−p(X), the space of smooth (k − p,k − p)-forms with compact
support in X . Lelong proved that this current is positive and closed [DEM, LE].
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If S is a (weakly) positive (p, p)-current, it is of order 0, i.e. it extends
continuously to the space of continuous forms with compact support in X . In
other words, on a chart of X , the current S corresponds to a differential form with
measure coefficients. We define the mass of S on a Borel set K by

‖S‖K :=
∫

K
S∧ωk−p.

When K is relatively compact in X , we obtain an equivalent norm if we change the
Hermitian metric on X . This is a consequence of the property we mentioned above,
which says that S takes values in salient convex closed cones. Note that the previous
mass-norm is just defined by an integral, which is easier to compute or to estimate
than the usual mass for currents on real manifolds.

Positivity implies an important compactness property. As for positive measures,
any family of positive (p, p)-currents with locally uniformly bounded mass, is
relatively compact in the cone of positive (p, p)-currents. For the current [Y ] in
Example A.12, by Wirtinger’s theorem, the mass on K is equal to (k− p)! times the
volume of Y ∩K with respect to the considered Hermitian metric. If S is a negative
(p, p)-current, its mass is defined by

‖S‖K := −
∫

K
S∧ωk−p.

The following result is the complex version of the classical support theorem in the
real setting, [BA, HP, FE].

Proposition A.13. Let S be a (p, p)-current supported on a smooth complex sub-
manifold Y of X. Let τ :Y →X denote the inclusion map. Assume that S is C-normal,
i.e. S and ddcS are of order 0. Then, S is a current on Y . More precisely, there is a
C-normal (p, p)-current S′ on Y such that S = τ∗(S′). If S is positive closed and Y
is of dimension k− p, then S is equal to a combination with positive coefficients of
currents of integration on components of Y .

The last property holds also when Y is a singular analytic set. Proposition A.13
applies to positive closed (p, p)-currents which play an important role in complex
geometry and dynamics. These currents generalize analytic sets of dimension k− p,
as we have seen in Example A.12. They have no mass on Borel sets of 2(k− p)-
dimensional Hausdorff measure 0. The proposition is used in order to develop a
calculus on potentials of closed currents.

We introduce now the notion of Lelong number for such currents which gen-
eralizes the notion of multiplicity for analytic sets. Let S be a positive closed
(p, p)-current on X . Consider local coordinates z on a chart U of X and the local
Kähler form ddc‖z‖2. Let Ba(r) denote the ball of center a and of radius r contained
in U . Then, S∧ (ddc‖z‖2)k−p is a positive measure on U . Define for a ∈U

ν(S,a,r) :=
‖S∧ (ddc‖z‖2)k−p‖Ba(r)

πk−pr2(k−p) .
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Note that πk−pr2(k−p) is (k− p)! times the volume of a ball in Ck−p of radius r, i.e.
the mass of the current associated to this ball. When r decreases to 0, ν(S,a,r) is
decreasing and the Lelong number of S at a is the limit

ν(S,a) := lim
r→0

ν(S,a,r).

It does not depend on the coordinates. So, we can define the Lelong number
for currents on any manifold. Note that ν(S,a) is also the mass of the measure
S∧ (ddc log‖z− a‖)k−p at a. We will discuss the wedge-product (intersection) of
currents in the next paragraph.

If S is the current of integration on an analytic set Y , by Thie’s theorem, ν(S,a)
is equal to the multiplicity of Y at a which is an integer. This implies the following
Lelong’s inequality: the Euclidean 2(k− p)-dimensional volume of Y in a ball Ba(r)
centered at a point a ∈Y, is at least equal to 1

(k−p)!π
k−pr2(k−p), the volume in Ba(r)

of a (k− p)-dimensional linear space passing through a.
Positive closed currents generalize analytic sets but they are much more flexible.

A remarkable fact is that the use of positive closed currents allows to construct
analytic sets. The following theorem of Siu [SIU] is a beautiful application of the
complex L2 method.

Theorem A.14. Let S be a positive closed (p, p)-current on X. Then, for c > 0, the
level set {ν(S,a) ≥ c} of the Lelong number is an analytic set of X, of dimension
≤ k − p. Moreover, there is a unique decomposition S = S1 + S2 where S1 is a
locally finite combination, with positive coefficients, of currents of integration on
analytic sets of codimension p and S2 is a positive closed (p, p)-current such that
{ν(S2,z) > 0} is a finite or countable union of analytic sets of dimension≤ k− p−1.

Calculus on currents is often delicate. However, the theory is well developped
for positive closed (1,1)-currents thanks to the use of plurisubharmonic functions.
Note that positive closed (1,1)-currents correspond to hypersurfaces (analytic sets
of pure codimension 1) in complex geometry and working with (p, p)-currents, as
with higher codimension analytic sets, is more difficult.

An upper semi-continuous function u : X → R∪{−∞}, not identically −∞ on
any component of X , is plurisubharmonic (p.s.h. for short) if it is subharmonic or
identically −∞ on any holomorphic disc in X . Recall that a holomorphic disc in X
is a holomorphic map τ : ∆ → X where ∆ is the unit disc in C. One often identifies
this holomorphic disc with its image τ(∆). If u is p.s.h., then u◦τ is subharmonic or
identically −∞ on ∆ . As for subharmonic functions, we have the submean inequal-
ity: in local coordinates, the value at a of a p.s.h. function is smaller or equal to
the average of the function on a sphere centered at a. Indeed, this average increases
with the radius of the sphere. The submean inequality implies the maximum prin-
ciple: if a p.s.h. function on a connected manifold X has a maximum, it is constant.
The semi-continuity implies that p.s.h. functions are locally bounded from above.
A function v is pluriharmonic if v and −v are p.s.h. Pluriharmonic functions are
locally real parts of holomorphic functions, in particular, they are real analytic. The
following proposition is of constant use.
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Proposition A.15. A function u : X →R∪{−∞} is p.s.h. if and only if the following
conditions are satisfied

1. u is strongly upper semi-continuous, that is, for any subset A of full Lebesgue
measure in X and for any point a in X, we have u(a) = limsupu(z) when z → a
and z ∈ A.

2. u is locally integrable with respect to the Lebesgue measure on X and ddcu is a
positive closed (1,1)-current.

Conversely, any positive closed (1,1)-current can be locally written as ddcu
where u is a (local) p.s.h. function. This function is called a local potential of the
current. Two local potentials differ by a pluriharmonic function. So, there is almost
a correspondence between positive closed (1,1)-currents and p.s.h. functions. We
say that u is strictly p.s.h. if ddcu is strictly positive. The p.s.h. functions are defined
at every point; this is a crucial property in pluripotential theory. Other important
properties of this class of functions are some strong compactness properties that we
state below.

If S is a positive closed (p, p)-current, one can write locally S = ddcU with U a
(p−1, p−1)-current. We can choose the potential U negative with good estimates
on the mass but the difference of two potentials may be very singular. The use of
potentials U is much more delicate than in the bidegree (1,1) case. We state here a
useful local estimate, see e.g. [DN].

Proposition A.16. Let V be convex open domain in Ck and W an open set with
W ! V. Let S be a positive closed (p, p)-current on V . Then there is a negative L1

form U of bidegree (p−1, p−1) on W such that ddcU = S and ‖U‖L1(W) ≤ c‖S‖V
where c > 0 is a constant independent of S. Moreover, U depends continuously on
S, where the continuity is with respect to the weak topology on S and the L1(W )
topology on U.

Note that when p = 1, U is equal almost everywhere to a p.s.h. function u such
that ddcu = S.

Example A.17. Let f be a holomorphic function on X not identically 0 on any
component of X . Then, log | f | is a p.s.h. function and we have ddc log | f | =∑ni[Zi]
where Zi are irreducible components of the hypersurface { f = 0} and ni their mul-
tiplicities. The last equation is called Poincaré-Lelong equation. Locally, the ideal
of holomorphic functions vanishing on Zi is generated by a holomorphic function gi
and f is equal to the product of ∏gni

i with a non-vanishing holomorphic function.
In some sense, log | f | is one of the most singular p.s.h. functions. If X is a ball,
the convex set generated by such functions is dense in the cone of p.s.h. functions
[HO, GU] for the L1

loc topology. If f1, . . . , fn are holomorphic on X , not identically
0 on a component of X , then log(| f1|2 + · · ·+ | fn|2) is also a p.s.h. function.

The following proposition is useful in constructing p.s.h. functions.

Proposition A.18. Let χ be a function defined on (R ∪ {−∞})n with values in
R∪{−∞}, not identically −∞, which is convex in all variables and increasing in
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each variable. Let u1, . . . ,un be p.s.h. functions on X. Then χ(u1, . . . ,un) is p.s.h. In
particular, the function max(u1, . . . ,un) is p.s.h.

We call complete pluripolar set the pole set {u = −∞} of a p.s.h. function and
pluripolar set a subset of a complete pluripolar one. Pluripolar sets are of Hausdorff
dimension ≤ 2k − 2, in particular, they have zero Lebesgue measure. Finite and
countable unions of (locally) pluripolar sets are (locally) pluripolar. In particular,
finite and countable unions of analytic subsets are locally pluripolar.

Proposition A.19. Let E be a closed pluripolar set in X and u a p.s.h. function on
X \E, locally bounded above near E. Then the extension of u to X given by

u(z) := limsup
w→z

w∈X\E

u(w) for z ∈ E,

is a p.s.h. function.

The following result describes compactness properties of p.s.h. functions, see
[HO].

Proposition A.20. Let (un) be a sequence of p.s.h. functions on X, locally bounded
from above. Then either it converges locally uniformly to −∞ on a component of
X or there is a subsequence (uni) which converges in Lp

loc(X) to a p.s.h. function
u for every p with 1 ≤ p < ∞. In the second case, we have limsupuni ≤ u with
equality outside a pluripolar set. Moreover, if K is a compact subset of X and if h is a
continuous function on K such that u < h on K, then uni < h on K for i large enough.

The last assertion is the classical Hartogs’ lemma. It suggests the following no-
tion of convergence introduced in [DS10]. Let (un) be a sequence of p.s.h. functions
converging to a p.s.h. function u in L1

loc(X). We say that the sequence (un) converges
in the Hartogs’ sense or is H-convergent if for any compact subset K of X there
are constants cn converging to 0 such that un + cn ≥ u on K. In this case, Hartogs’
lemma implies that un converge pointwise to u. If (un) decreases to a function u,
not identically −∞, then u is p.s.h. and (un) converges in the Hartogs’ sense. The
following result is useful in the calculus with p.s.h. functions.

Proposition A.21. Let u be a p.s.h. function on an open subset D of Ck. Let D′ ! D
be an open set. Then, there is a sequence of smooth p.s.h. functions un on D′ which
decreases to u.

The functions un can be obtained as the standard convolution of u with some
radial function ρn on Ck. The submean inequality for u allows to choose ρn so that
un decrease to u.

The following result, see [HO2], may be considered as the strongest compactness
property for p.s.h. functions. The proof can be reduced to the one dimensional case
by slicing.
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Theorem A.22. Let F be a family of p.s.h. functions on X which is bounded in
L1

loc(X). Let K be a compact subset of X. Then there are constants α > 0 and A > 0
such that

‖e−αu‖L1(K) ≤ A

for every function u in F .

P.s.h. functions are in general unbounded. However, the last result shows that
such functions are nearly bounded. The above family F is uniformly bounded from
above on K. So, we also have the estimate

‖eα |u|‖L1(K) ≤ A

for u in F and for some (other) constants α,A. More precise estimates can be
obtained in terms of the maximal Lelong number of ddcu in a neighbourhood of K.

Define the Lelong number ν(u,a) of u at a as the Lelong number of ddcu at a.
The following result describes the relation with the singularity of p.s.h. functions
near a pole. We fix here a local coordinate system for X .

Proposition A.23. The Lelong number ν(u,a) is the supremum of the number ν
such that the inequality u(z) ≤ ν log‖z−a‖ holds in a neighbourhood of a.

If S is a positive closed (p, p)-current, the Lelong number ν(S,a) can be com-
puted as the mass at a of the measure S∧ (ddc log‖z−a‖)k−p. This property allows
to prove the following result, due to Demailly [DEM], which is useful in dynamics.

Proposition A.24. Let τ : (Ck,0)→ (Ck,0) be a germ of an open holomorphic map
with τ(0) = 0. Let d denote the multiplicity of τ at 0. Let S be a positive closed
(p, p)-current on a neighbourhood of 0. Then, the Lelong number of τ∗(S) at 0
satisfies the inequalities

ν(S,0) ≤ ν(τ∗(S),0) ≤ dk−pν(S,0).

In particular, we have ν(τ∗(S),0) = 0 if and only if ν(S,0) = 0.

Assume now that X is a compact Kähler manifold and ω is a Kähler form on
X . If S is a ddc-closed (p, p)-current, we can, using the ddc-lemma, define a linear
form on Hk−p,k−p(X ,C) by [α] .→ 〈S,α〉. Therefore, the Poincaré duality implies
that S is canonically associated to a class [S] in H p,p(X ,C). If S is real then [S] is
in H p,p(X ,R). If S is positive, its mass 〈S,ωk−p〉 depends only on the class [S].
So, the mass of positive ddc-closed currents can be computed cohomologically. In
Pk, the mass of ω p

FS is 1 since ωk
FS is a probability measure. If H is a subspace of

codimension p of Pk, then the current associated to H is of mass 1 and it belongs to
the class [ω p

FS]. If Y is an analytic set of pure codimension p of Pk, the degree deg(Y )
of Y is by definition the number of points in its intersection with a generic projective
space of dimension p. One can check that the cohomology class of Y is deg(Y )[ω p

FS].
The volume of Y , obtained using Wirtinger’s theorem A.2, is equal to 1

p! deg(Y ).
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Exercise A.25. With the notation of Exercise A.11, show that τ∗(ϕ) is p.s.h. if ϕ is
p.s.h.

Exercise A.26. Using that ν(S,a,r) is decreasing, show that if (Sn) is a sequence of
positive closed (p, p)-currents on X converging to a current S and (an) is a sequence
in X converging to a, then limsupν(Sn,an) ≤ ν(S,a).

Exercise A.27. Let S and S′ be positive closed (1,1)-currents such that S′ ≤ S.
Assume that the local potentials of S are bounded or continuous. Show that the local
potentials of S′ are also bounded or continuous.

Exercise A.28. Let F be an L1
loc bounded family of p.s.h. functions on X . Let K be

a compact subset of X . Show that F is locally bounded from above and that there
is c > 0 such that ‖ddcu‖K ≤ c for every u ∈ F . Prove that there is a constant ν > 0
such that ν(u,a) ≤ ν for u ∈ F and a ∈ K.

Exercise A.29. Let Yi, 1 ≤ i ≤ m, be analytic sets of pure codimension pi in Pk.
Assume p1 + · · ·+ pm ≤ k. Show that the intersection of the Yi’s is a non-empty
analytic set of dimension ≥ k− p1 −·· ·− pm.

A.3 Intersection, Pull-back and Slicing

We have seen that positive closed currents generalize differential forms and ana-
lytic sets. However, it is not always possible to extend the calculus on forms or on
analytic sets to currents. We will give here some results which show how positive
closed currents are flexible and how they are rigid.

The theory of intersection is much more developed in bidegree (1,1) thanks
to the use of their potentials which are p.s.h. functions. The case of continuous
potentials was considered by Chern-Levine-Nirenberg [CLN]. Bedford-Taylor
[BD] developed a nice theory when the potentials are locally bounded. The case
of unbounded potentials was considered by Demailly [DE] and Fornæss-Sibony
[FS2, S2]. We have the following general definition.

Let S be a positive closed (p, p)-current on X with p ≤ k − 1. If ω is a fixed
Hermitian form on X as above, then S∧ωk−p is a positive measure which is called
the trace measure of S. In local coordinates, the coefficients of S are measures,
bounded by a constant times the trace measure. Now, if u is a p.s.h function on X ,
locally integrable with respect to the trace measure of S, then uS is a current on X
and we can define

ddcu∧S := ddc(uS).

Since u can be locally approximated by decreasing sequences of smooth p.s.h.
functions, it is easy to check that the previous intersection is a positive closed
(p + 1, p + 1)-current with support contained in supp(S). When u is pluriharmonic,
ddcu∧ S vanishes identically. So, the intersection depends only on ddcu and on S.
If R is a positive closed (1,1)-current on X , one defines R∧ S as above using local
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potentials of R. In general, ddcu∧S does not depend continuously on u and S. The
following proposition is a consequence of Hartogs’ lemma.

Proposition A.30. Let u(n) be p.s.h. functions on X which converge in the Hartogs’
sense to a p.s.h. function u. If u is locally integrable with respect to the trace
measure of S, then ddcu(n)∧S are well-defined and converge to ddcu∧S. If u is con-
tinuous and Sn are positive closed (1,1)-currents converging to S, then ddcu(n)∧Sn
converge to ddcu∧S.

If u1, . . . ,uq, with q ≤ k− p, are p.s.h. functions, we can define by induction the
wedge-product

ddcu1 ∧ . . .∧ddcuq ∧S

when some integrability conditions are satisfied, for example when the ui are locally
bounded. In particular, if u(n)

j , 1 ≤ j ≤ q, are continuous p.s.h. functions converging
locally uniformly to continuous p.s.h. functions u j and if Sn are positive closed
converging to S, then

ddcu(n)
1 ∧ . . .∧ddcu(n)

q ∧Sn → ddcu1 ∧ . . .∧ddcuq ∧S

The following version of the Chern-Levine-Nirenberg inequality is a very useful
result [CLN, DEM].

Theorem A.31. Let S be a positive closed (p, p)-current on X. Let u1, . . . ,uq, q ≤
k− p, be locally bounded p.s.h. functions on X and K a compact subset of X. Then
there is a constant c > 0 depending only on K and X such that if v is p.s.h. on X then

‖vddcu1 ∧ . . .∧ddcuq ∧S‖K ≤ c‖v‖L1(σS)‖u1‖L∞(X) . . .‖uq‖L∞(X),

where σS denotes the trace measure of S.

This inequality implies that p.s.h. functions are locally integrable with respect to
the current ddcu1 ∧ . . .∧ddcuq. We deduce the following corollary.

Corollary A.32. Let u1, . . . ,up, p ≤ k, be locally bounded p.s.h. functions on X.
Then, the current ddcu1 ∧ . . .∧ ddcup has no mass on locally pluripolar sets, in
particular on proper analytic sets of X.

We give now two other regularity properties of the wedge-product of currents
with Hölder continuous local potentials.

Proposition A.33. Let S be a positive closed (p, p)-current on X and q a positive
integer such that q ≤ k− p. Let ui be Hölder continuous p.s.h. functions of Hölder
exponentsαi with 0 <αi ≤ 1 and 1≤ i≤ q. Then, the current ddcu1∧ . . .∧ddcuq∧S
has no mass on Borel sets with Hausdorff dimension less than or equal to
2(k− p−q)+α1 + · · ·+αq.
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The proof of this result is given in [S3]. It is based on a mass estimate on a ball in
term of the radius which is a consequence of the Chern-Levine-Nirenberg inequality.

We say that a positive measure ν in X is locally moderate if for any compact
subset K of X and any compact family F of p.s.h. functions in a neighbourhood
of K, there are positive constants α and c such that

∫

K
e−αudν ≤ c

for u in F . This notion was introduced in [DS1]. We say that a positive current is
locally moderate if its trace measure is locally moderate. The following result was
obtained in [DNS].

Theorem A.34. Let S be a positive closed (p, p)-current on X and u a p.s.h. function
on X. Assume that S is locally moderate and u is Hölder continuous. Then the cur-
rent ddcu∧ S is locally moderate. In particular, wedge-products of positive closed
(1,1)-currents with Hölder continuous local potentials are locally moderate.

Theorem A.22 implies that a measure defined by a smooth form is locally
moderate. Theorem A.34 implies, by induction, that ddcu1 ∧ . . .∧ ddcup is locally
moderate when the p.s.h. functions u j are Hölder continuous. So, using p.s.h. func-
tions as test functions, the previous currents satisfy similar estimates as smooth
forms do. One may also consider that Theorem A.34 strengthens A.22 and gives
a strong compactness property for p.s.h. functions. The estimate has many conse-
quences in complex dynamics.

The proof of Theorem A.34 is based on a mass estimate of ddcu ∧ S on the
sub-level set {v < −M} of a p.s.h function v. Some estimates are easily obtained
for u continuous using the Chern-Levine-Nirenberg inequality or for u of class C 2.
The case of Hölder continuous function uses arguments close to the interpolation
between the Banach spaces C 0 and C 2. However, the non-linearity of the estimate
and the positivity of currents make the problem more subtle.

We discuss now the pull-back of currents by holomorphic maps which are not
submersions. The problem can be considered as a particular case of the general
intersection theory, but we will not discuss this point here. The following result was
obtained in [DS8].

Theorem A.35. Let τ : X ′ →X be an open holomorphic map between complex man-
ifolds of the same dimension. Then the pull-back operator τ∗ on smooth positive
closed (p, p)-forms can be extended in a canonical way to a continuous operator
on positive closed (p, p)-currents S on X. If S has no mass on a Borel set K ⊂ X,
then τ∗(S) has no mass on τ−1(K). The result also holds for negative currents S
such that ddcS is positive.

By canonical way, we mean that the extension is functorial. More precisely,
one can locally approximate S by a sequence of smooth positive closed forms. The
pull-back of these forms converge to some positive closed (p, p)-current which
does not depend on the chosen sequence of forms. This limit defines the pull-back
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current τ∗(S). The result still holds when X ′ is singular. In the case of bidegree
(1,1), we have the following result due to Méo [ME].

Proposition A.36. Let τ : X ′ → X be a holomorphic map between complex
manifolds. Assume that τ is dominant, that is, the image of τ contains an open
subset of X. Then the pull-back operator τ∗ on smooth positive closed (1,1)-forms
can be extended in a canonical way to a continuous operator on positive closed
(1,1)-currents S on X.

Indeed, locally we can write S = ddcu with u p.s.h. The current τ∗(S) is then
defined by τ∗(S) := ddc(u ◦ τ). One can check that the definition does not depend
on the choice of u.

The remaining part of this paragraph deals with the slicing of currents. We only
consider a situation used in this course. Let π : X →V be a dominant holomorphic
map from X to a manifold V of dimension l and S a current on X . Slicing theory
allows to define the slice 〈S,π ,θ 〉 of some currents S on X by the fiber π−1(θ ).
Slicing theory generalizes the restriction of forms to fibers. One can also consider it
as a generalization of Sard’s and Fubini’s theorems for currents or as a special case
of intersection theory: the slice 〈S,π ,θ 〉 can be seen as the wedge-product of S with
the current of integration on π−1(θ ). We can consider the slicing of C-flat currents,
in particular, of (p, p)-currents such that S and ddcS are of order 0. The operation
preserves positivity and commutes with ∂ , ∂ . If ϕ is a smooth form on X then
〈S∧ϕ ,π ,θ 〉 = 〈S,π ,θ 〉 ∧ϕ . Here, we only consider positive closed (k− l,k− l)-
currents S. In this case, the slices 〈S,π ,θ 〉 are positive measures on X with support
in π−1(θ ).

Let y denote the coordinates in a chart of V and λV := (ddc‖y‖2)l the
Euclidean volume form associated to y. Let ψ(y) be a positive smooth function
with compact support such that

∫
ψλV = 1. Define ψε (y) := ε−2lψ(ε−1y) and

ψθ ,ε(y) := ψε(y− θ ). The measures ψθ ,ελV approximate the Dirac mass at θ . For
every smooth test function Φ on X , we have

〈S,π ,θ 〉(Φ) = lim
ε→0

〈S∧π∗(ψθ ,ελV ),Φ〉

when 〈S,π ,θ 〉 exists. This property holds for all choice of ψ . Conversely, when the
previous limit exists and is independent of ψ , it defines the measure 〈S,π ,θ 〉 and
we say that 〈S,π ,θ 〉 is well-defined. The slice 〈S,π ,θ 〉 is well-defined for θ out of
a set of Lebesgue measure zero in V and the following formula holds for smooth
formsΩ of maximal degree with compact support in V :

∫

θ∈V
〈S,π ,θ 〉(Φ)Ω(θ ) = 〈S∧π∗(Ω),Φ〉.

We recall the following result which was obtained in [DS7].

Theorem A.37. Let V be a complex manifold of dimension l and let π denote the
canonical projection from Ck ×V onto V . Let S be a positive closed current of
bidimension (l, l) on Ck ×V , supported on K ×V for a given compact subset K
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of Ck. Then the slice 〈S,π ,θ 〉 is well-defined for every θ in V and is a positive
measure whose mass is independent of θ . Moreover, if Φ is a p.s.h. function in a
neighbourhood of supp(S), then the function θ .→ 〈S,π ,θ 〉(Φ) is p.s.h.

The mass of 〈S,π ,θ 〉 is called the slice mass of S. The set of currents S as above
with bounded slice mass is compact for the weak topology on currents. In particular,
their masses are locally uniformly bounded on Ck ×V . In general, the slice 〈S,π ,θ 〉
does not depend continuously on S nor on θ . The last property in Theorem A.37
shows that the dependence on θ satisfies a semi-continuity property. More generally,
we have that (θ ,S) .→ 〈S,π ,θ 〉(Φ) is upper semi-continuous forΦ p.s.h. We deduce
easily from the above definition that the slice mass of S depends continuously on S.

Exercise A.38. Let X ,X ′ be complex manifolds. Let ν be a positive measure with
compact support on X such that p.s.h. functions on X are ν-integrable. If u is a p.s.h.
function on X ×X ′, show that x′ .→

∫
u(x,x′)dν(x) is a p.s.h function on X ′. Show

that if ν,ν ′ are positive measures on X ,X ′ which are locally moderate, then ν ⊗ν ′
is a locally moderate measure on X ×X ′.

Exercise A.39. Let S be a positive closed (1,1)-current on the unit ball of Ck. Let
π : Ĉk → Ck be the blow-up of Ck at 0 and E the exceptional set. Show π∗(S) is
equal to ν[E]+S′, where ν is the Lelong number of S at 0 and S′ is a current without
mass on E .

A.4 Currents on Projective Spaces

In this paragraph, we will introduce quasi-potentials of currents, the spaces of d.s.h.
functions, DSH currents and the complex Sobolev space which are used as observ-
ables in complex dynamics. We also introduce PB, PC currents and the notion of
super-potentials which are crucial in the calculus with currents in higher bidegree.

Recall that the Fubini-Study form ωFS on Pk satisfies
∫
Pk ωk

FS = 1. If S is a
positive closed (p, p)-current, the mass of S is given by by ‖S‖ := 〈S,ωk−p

FS 〉. Since
H p,p(Pk,R) is generated by ω p

FS, such a current S is cohomologous to cω p
FS where c

is the mass of S. So, S−cω p
FS is exact and the ddc-lemma, which also holds for cur-

rents, implies that there exists a (p−1, p−1)-currentU , such that S = cω p
FS +ddcU .

We call U a quasi-potential of S. We have in fact the following more precise result
[DS10].

Theorem A.40. Let S be a positive closed (p, p)-current of mass 1 in Pk. Then,
there is a negative form U such that ddcU = S−ω p

FS. For r,s with 1 ≤ r < k/(k−1)
and 1 ≤ s < 2k/(2k−1), we have

‖U‖Lr ≤ cr and ‖∇U‖Ls ≤ cs,

where cr,cs are constants independent of S. Moreover, U depends linearly and
continuously on S with respect to the weak topology on the currents S and the Lr

topology on U.
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The construction of U uses a kernel constructed in Bost-Gillet-Soulé [BGS]. We
call U the Green quasi-potential of S. When p = 1, two quasi-potentials of S differ
by a constant. So, the solution is unique if we require that 〈ωk

FS,U〉 = 0. In this
case, we have a bijective and bi-continuous correspondence S ↔ u between positive
closed (1,1)-currents S and their normalized quasi-potentials u.

By maximum principle, p.s.h. functions on a compact manifold are constant.
However, the interest of p.s.h. functions is their type of local singularities. S.T.
Yau introduced in [YA] the useful notion of quasi-p.s.h. functions. A quasi-p.s.h.
function is locally the difference of a p.s.h. function and a smooth one. Several prop-
erties of quasi-p.s.h. functions can be deduced from properties of p.s.h. functions. If
u is a quasi-p.s.h. function on Pk there is a constant c > 0 such that ddcu ≥−cωFS.
So, ddcu is the difference of a positive closed (1,1)-current and a smooth positive
closed (1,1)-form: ddcu = (ddcu + cωFS)− cωFS. Conversely, if S is a positive
closed (1,1)-current cohomologous to a real (1,1)-form α , there is a quasi-p.s.h.
function u, unique up to a constant, such that ddcu = S−α . The following propo-
sition is easily obtained using a convolution on the group of automorphisms of Pk,
see Demailly [DEM] for analogous results on compact Kähler manifolds.

Proposition A.41. Let u be a quasi-p.s.h. function on Pk such that ddcu ≥ −ωFS.
Then, there is a sequence (un) of smooth quasi-p.s.h. functions decreasing to u such
that ddcun ≥−ωFS. In particular, if S is a positive closed (1,1)-current on Pk, then
there are smooth positive closed (1,1)-forms Sn converging to S.

A subset E of Pk is pluripolar if it is contained in {u = −∞} where u is a quasi-
p.s.h. function. It is complete pluripolar if there is a quasi-p.s.h. function u such
that E = {u = −∞}. It is easy to check that analytic sets are complete pluripolar
and that a countable union of pluripolar sets is pluripolar. The following capacity is
close to a notion of capacity introduced by H. Alexander in [AL]. The interesting
point here is that our definition extends to general compact Kähler manifold [DS6].
We will see that the same idea allows to define the capacity of a current. Let P1
denote the set of quasi-p.s.h. functions u on Pk such that maxPk u = 0. The capacity
of a Borel set E in Pk is

cap(E) := inf
u∈P1

exp
(

sup
E

u
)
.

The Borel set E is pluripolar if and only if cap(E) = 0. It is not difficult to show
that when the volume of E tends to the volume of Pk then cap(E) tends to 1.

The space of d.s.h. functions (differences of quasi-p.s.h. functions) and the com-
plex Sobolev space of functions on compact Kähler manifolds were introduced
by the authors in [DS6, DS11]. They satisfy strong compactness properties and
are invariant under the action of holomorphic maps. Using them as test functions,
permits to obtain several results in complex dynamics.

A function on Pk is called d.s.h. if it is equal outside a pluripolar set to the
difference of two quasi-p.s.h. functions. We identify two d.s.h. functions if they are
equal outside a pluripolar set. Let DSH(Pk) denote the space of d.s.h. functions on
Pk. We deduce easily from properties of p.s.h. functions that DSH(Pk) is contained
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in Lp(Pk) for 1 ≤ p < ∞. If u is d.s.h. then ddcu can be written as the difference of
two positive closed (1,1)-currents which are cohomologous. Conversely, if S± are
positive closed (1,1)-currents of the same mass, then there is a d.s.h. function u,
unique up to a constant, such that ddcu = S+−S−.

We introduce several equivalent norms on DSH(Pk). Define

‖u‖DSH := |〈ωk
FS,u〉|+ min‖S±‖,

where the minimum is taken over positive closed (1,1)-currents S± such that
ddcu = S+ − S−. The term |〈ωk

FS,u〉| may be replaced with ‖u‖Lp , 1 ≤ p < ∞;
we then obtain equivalent norms. The space of d.s.h. functions endowed with the
above norm is a Banach space. However, we will use on this space a weaker topol-
ogy: we say that a sequence (un) converges to u in DSH(Pk) if un converge to u in the
sense of currents and if (un) is bounded with respect to ‖ ·‖DSH. Under the last con-
dition on the DSH-norm, the convergence in the sense of currents of un is equivalent
to the convergence in Lp for 1 ≤ p < ∞. We have the following proposition [DS6].

Proposition A.42. Let u be a d.s.h. function on Pk such that ‖u‖DSH ≤ 1. Then
there are negative quasi-p.s.h. function u± such that u = u+−u−, ‖u±‖DSH ≤ c and
ddcu± ≥ −cωFS, where c > 0 is a constant independent of u.

A positive measure on Pk is said to be PC 10 if it can be extended to a continuous
linear form on DSH(Pk). Here, the continuity is with respect to the weak topology
on d.s.h. functions. A positive measure is PB 11 if quasi-p.s.h. functions are inte-
grable with respect to this measure. PB measures have no mass on pluripolar sets
and d.s.h. functions are integrable with respect to such measures. PC measures are
always PB. Let µ be a non-zero PB positive measure on X . Define

‖u‖µ := |〈µ ,u〉|+ min‖S±‖,

with S± as above. We have the following useful property [DS6].

Proposition A.43. The semi-norm ‖ · ‖µ is in fact a norm on DSH(Pk) which is
equivalent to ‖ · ‖DSH.

One can extend the above notions to currents but the definitions are slightly
different. Let DSHp(Pk) denote the space generated by negative (p, p)-currents
Φ such that ddcΦ is the difference of two positive closed (p + 1, p + 1)-currents.
A DSH (p, p)-current, i.e. a current in DSHp(Pk), is not an L1 form in general.
Define the ‖Φ‖DSH-norm of a negative currentΦ in DSHp(Pk) by

‖Φ‖DSH := ‖Φ‖+ min‖Ω±‖,

10 In dimension 1, the measure is PC if and only if its local Potentials are Continuous.
11 In dimension 1, the measure is PB if and only if its local Potentials are Bounded.
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where Ω± are positive closed such that ddcΦ = Ω+ −Ω−. For a general Φ in
DSHp(Pk) define

‖Φ‖DSH := min(‖Φ+‖DSH +‖Φ−‖DSH),

whereΦ± are negative currents in DSHp(X) such thatΦ =Φ+−Φ−. We also con-
sider on this space the weak topology: a sequence (Φn) converges toΦ in DSHp(Pk)
if it converges to Φ in the sense of currents and if (‖Φn‖DSH) is bounded. Using a
convolution on the group of automorphisms of Pk, we can show that smooth forms
are dense in DSHp(Pk).

A positive closed (p, p)-current S is called PB if there is a constant c > 0 such
that |〈S,Φ〉| ≤ c‖Φ‖DSH for any real smooth (k − p,k − p)-form Φ . The current
S is PC if it can be extended to a linear continuous form on DSHk−p(Pk). The
continuity is with respect to the weak topology we consider on DSHk−p(Pk). PC
currents are PB. We will see that these notions correspond to currents with bounded
or continuous super-potentials. As a consequence of Theorem A.35, we have the
following useful result.

Proposition A.44. Let f : Pk → Pk be a holomorphic surjective map. Then, the op-
erator f ∗ on smooth forms has a continuous extension f ∗ : DSHp(Pk)→DSHp(Pk).
If S is a current on DSHp(Pk) with no mass on a Borel set A, then f ∗(S) has no
mass on f−1(A).

Another useful functional space is the complex Sobolev space W ∗(Pk). Its defi-
nition uses the complex structure of Pk. In dimension one, W ∗(P1) coincides with
the Sobolev space W 1,2(P1) of real-valued functions in L2 with gradient in L2. In
higher dimension, W ∗(Pk) is the space of functions u in W 1,2(Pk) such that i∂u∧∂u
is bounded by a positive closed (1,1)-currentΘ . We define

‖u‖W∗ := |〈ωk
FS,u〉|+ min‖Θ‖1/2

with Θ as above, see [DS11, V3]. By Sobolev-Poincaré inequality, the term
|〈ωk

FS,u〉| may be replaced with ‖u‖L1 or ‖u‖L2; we then obtain equivalent norms.
The weak topology on W ∗(Pk) is defined as in the case of d.s.h. functions: a se-
quence (un) converges in W ∗(Pk) to a function u if it converges to u in the sense of
currents and if (‖un‖W∗) is bounded. A positive measure µ is WPC if it can be ex-
tended to a linear continuous form on W ∗(Pk). If u is a strictly negative quasi-p.s.h.
function, one can prove that log(−u) is in W ∗(Pk). This allows to show that WPC
measures have no mass on pluripolar sets.

In the rest of the paragraph, we will introduce the notion of super-potentials
associated to positive closed (p, p)-currents. They are canonical functions defined
on infinite dimensional spaces and are, in some sense, quasi-p.s.h. functions there.
Super-potentials were introduced by the authors in order to replace ordinary quasi-
p.s.h. functions which are used as quasi-potentials for currents of bidegree (1,1).
The theory is satisfactory in the case of projective spaces [DS10] and can be easily
extended to homogeneous manifolds.
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Let Ck−p+1(Pk) denote the convex set of positive closed currents of bidegree
(k− p+1,k− p+1) and of mass 1, i.e. currents cohomologous to ωk−p+1

FS . Let S be
a positive closed (p, p)-current on Pk. We assume for simplicity that S is of mass 1;
the general case can be deduced by linearity. The super-potential12 US of S is a func-
tion on Ck−p+1(Pk) with values in R∪{−∞}. Let R be a current in Ck−p+1(Pk) and
UR a potential of R−ωk−p+1

FS . Subtracting from UR a constant times ωk−p
FS allows to

have 〈UR,ω p
FS〉 = 0. We say that UR is a quasi-potential of mean 0 of R. Formally,

i.e. in the case where R and UR are smooth, the value of US at R is defined by

US(R) := 〈S,UR〉.

One easily check using Stokes’ formula that formally if US is a quasi-potential
of mean 0 of S, then US(R) = 〈US,R〉. Therefore, the previous definition does not
depend on the choice of UR or US. By definition, we have US(ωk−p+1

FS ) = 0. Observe
also that when S is smooth, the above definition makes sense for every R and US is
a continuous affine function on Ck−p+1(Pk). It is also clear that if US = US′ , then
S = S′. The following theorem allows to define US in the general case.

Theorem A.45. The above function US, which is defined on smooth forms R in
Ck−p+1(Pk), can be extended to an affine function on Ck−p+1(Pk) with values in
R∪{−∞} by

US(R) := limsupUS(R′),

where R′ is smooth in Ck−p+1(Pk) and converges to R. We have US(R) = UR(S).
Moreover, there are smooth positive closed (p, p)-forms Sn of mass 1 and constants
cn converging to 0 such that USn + cn decrease to US. In particular, USn converge
pointwise to US.

For bidegree (1,1), there is a unique quasi-p.s.h. function uS such that ddcuS =
S−ωFS and 〈ωk

FS,uS〉 = 0. If δa denotes the Dirac mass at a, we have US(δa) =
uS(a). Dirac masses are extremal elements in Ck(Pk). The super-potential US in this
case is just the affine extension of uS, that is, we have for any probability measure ν:

US(ν) =
∫

US(δa)dν(a) =
∫

uS(a)dν(a).

The function US extends the action 〈S,Φ〉 on smooth forms Φ to 〈S,U〉 where
U is a quasi-potential of a positive closed current. Super-potentials satisfy analo-
gous properties as quasi-p.s.h. functions do. They are upper semi-continuous and
bounded from above by a universal constant. Note that we consider here the weak
topology on Ck−p+1(Pk). We have the following version of the Hartogs’ lemma.

Proposition A.46. Let Sn be positive closed (p, p)-currents of mass 1 on Pk con-
verging to S. Then for every continuous function U on Ck−p+1 with US < U , we
have USn < U for n large enough. In particular, limsupUSn ≤ US.

12 The super-potential we consider here corresponds to the super-potential of mean 0 in [DS10].
The other super-potentials differ from US by constants.
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We say that Sn converge to S in the Hartogs’ sense if Sn converge to S and if
there are constants cn converging to 0 such that USn + cn ≥ US. If USn converge
uniformly to US, we say that Sn converge SP-uniformly to S.

One can check that PB and PC currents correspond to currents of bounded or
continuous super-potential. In the case of bidegree (1,1), they correspond to cur-
rents with bounded or continuous quasi-potential. We say that S′ is more diffuse
than S if US′ −US is bounded from below. So, PB currents are more diffuse than
any other currents.

In order to prove the above results and to work with super-potentials, we have
to consider a geometric structure on Ck−p+1(Pk). In a weak sense, Ck−p+1(Pk) can
be seen as a space of infinite dimension which contains many “analytic” sets of
finite dimension that we call structural varieties. Let V be a complex manifold and
R a positive closed current of bidegree (k − p + 1,k − p + 1) on V ×Pk. Let πV
denote the canonical projection map from V ×Pk onto V . One can prove that the
slice 〈R,πV ,θ 〉 is defined for θ outside a locally pluripolar set of V . Each slice
can be identified with a positive closed (p, p)-current Rθ on Pk. Its mass does not
depend on θ . So, multiplying R with a constant, we can assume that all the Rθ
are in Ck−p+1(Pk). The map τ(θ ) := Rθ or the family (Rθ ) is called a structural
variety of Ck−p+1(Pk). The restriction of US to this structural variety, i.e. US ◦ τ ,
is locally a d.s.h. function or identically −∞. When the structural variety is nice
enough, this restriction is quasi-p.s.h. or identically −∞. In practice, we often use
some special structural discs parametrized by θ in the unit disc of C. They are
obtained by convolution of a given current R with a smooth probability measure on
the group PGL(C,k + 1) of automorphisms of Pk.

Observe that since the correspondence S ↔ US is 1 : 1, the compactness on
positive closed currents should induce some compactness on super-potentials. We
have the following result.

Theorem A.47. Let W ⊂ Pk be an open set and K ⊂ W a compact set. Let S be a
current in Cp(Pk) with support in K and R a current in Ck−p+1(Pk). Assume that the
restriction of R to W is a bounded form. Then, the super-potential US of S satisfies

|US(R)| ≤ A
(
1 + log+ ‖R‖∞,W

)

where A > 0 is a constant independent of S, R and log+ := max(0, log).

This result can be applied to K = W = Pk and can be considered as a ver-
sion of the exponential estimate in Theorem A.22. Indeed, the weaker estimate
|US(R)| " 1 + ‖R‖∞ is easy to obtain. It corresponds to the L1 estimate on the
quasi-p.s.h. function uS in the case of bidegree (1,1).

Using the analogy with the bidegree (1,1) case, we define the capacity of a
current R as

cap(R) := inf
S

exp
(
US(R)−maxUS

)
.

This capacity describes rather the regularity of R: an R with big capacity is some-
how more regular. Theorem A.47 implies that cap(R) $ ‖R‖−λ∞ for some universal
constant λ > 0. This property is close to the capacity estimate for Borel sets in term
of volume.
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Super-potentials allow to develop a theory of intersection of currents in higher
bidegree. Here, the fact that US has a value at every point (i.e. at every current
R ∈ Ck−p+1(Pk)) is crucial. Let S, S′ be positive closed currents of bidegree (p, p)
and (p′, p′) with p + p′ ≤ k. We assume for simplicity that their masses are equal
to 1. We say that S and S′ are wedgeable if US is finite at S′ ∧ωk−p−p′+1

FS . This
property is symmetric on S and S′. If S̃, S̃′ are more diffuse than S,S′ and if S,S′ are
wedgeable, then S̃, S̃′ are wedgeable.

Let Φ be a real smooth form of bidegree (k − p − p′,k − p − p′). Write
ddcΦ = c(Ω+ −Ω−) with c ≥ 0 and Ω± positive closed of mass 1. If S and
S′ are wedgeable, define the current S∧S′ by

〈S∧S′,Φ〉 := 〈S′,ω p
FS ∧Φ〉+ cUS(S′ ∧Ω+)− cUS(S′ ∧Ω−).

A simple computation shows that the definition coincides with the usual wedge-
product when S or S′ is smooth. One can also prove that the previous definition does
not depend on the choice of c, Ω± and is symmetric with respect to S,S′. If S is of
bidegree (1,1), then S,S′ are wedgeable if and only if the quasi-potentials of S are
integrable with respect to the trace measure of S′. In this case, the above definition
coincides with the definition in Appendix A.3. We have the following general result.

Theorem A.48. Let Si be positive closed currents of bidegree (pi, pi) on Pk with
1≤ i ≤m and p1 + · · ·+ pm ≤ k. Assume that for 1≤ i≤m−1, Si and Si+1∧ . . .∧Sm
are wedgeable. Then, this condition is symmetric on S1, . . . ,Sm. The wedge-product
S1 ∧ . . . ∧ Sm is a positive closed current of mass ‖S1‖ . . .‖Sm‖ supported on
supp(S1) ∩ . . . ∩ supp(Sm). It depends linearly on each variable and is symmet-
ric on the variables. If S(n)

i converge to Si in the Hartogs’ sense, then the S(n)
i are

wedgeable and S(n)
1 ∧ . . .∧S(n)

m converge in the Hartogs’ sense to S1 ∧ . . .∧Sm.

We deduce from this result that wedge-products of PB currents are PB. One can
also prove that wedge-products of PC currents are PC. If Sn is defined by analytic
sets, they are wedgeable if the intersection of these analytic sets is of codimension
p1 + · · ·+ pm. In this case, the intersection in the sense of currents coincides with
the intersection of cycles, i.e. is equal to the current of integration on the intersec-
tion of cycles where we count the multiplicities. We have the following criterion of
wedgeability which contains the case of cycles.

Proposition A.49. Let S,S′ be positive closed currents on Pk of bidegrees (p, p)
and (p′, p′). Let W, W ′ be open sets such that S restricted to W and S′ restricted to
W ′ are bounded forms. Assume that W ∪W ′ is (p + p′)-concave in the sense that
there is a positive closed smooth form of bidegree (k− p− p′ + 1,k− p− p′ + 1)
with compact support in W ∪W ′. Then S and S′ are wedgeable.

The following result can be deduced from Theorem A.48.

Corollary A.50. Let Si be positive closed (1,1)-currents on Pk with 1 ≤ i ≤ p.
Assume that for 1 ≤ i ≤ p−1, Si admits a quasi-potential which is integrable with
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respect to the trace measure of Si+1 ∧ . . .∧Sp. Then, this condition is symmetric on
S1, . . . ,Sp. The wedge-product S1∧. . .∧Sp is a positive closed (p, p)-current of mass
‖S1‖ . . .‖Sp‖ supported on supp(S1)∩ . . .∩ supp(Sp). It depends linearly on each

variable and is symmetric on the variables. If S(n)
i converge to Si in the Hartogs’

sense, then the S(n)
i are wedgeable and S(n)

1 ∧ . . .∧S(n)
p converge to S1 ∧ . . .∧Sp.

We discuss now currents with Hölder continuous super-potential and moderate
currents. The space Ck−p+1(Pk) admits natural distances distα , with α > 0, defined
by

distα(R,R′) := sup
‖Φ‖Cα≤1

|〈R−R′,Φ〉|,

where Φ is a smooth (p− 1, p− 1)-form on Pk. The norm C α on Φ is the sum of
the C α -norms of its coefficients for a fixed atlas of Pk. The topology associated to
distα coincides with the weak topology. Using the theory of interpolation between
Banach spaces [T1], we obtain for β > α > 0 that

distβ ≤ distα ≤ cα ,β [distβ ]α/β

where cα ,β > 0 is a constant. So, a function on Ck−p+1(Pk) is Hölder continuous
with respect to distα if and only if it is Hölder continuous with respect to distβ . The
following proposition is useful in dynamics.

Proposition A.51. The wedge-product of positive closed currents on Pk with Hölder
continuous super-potentials has a Hölder continuous super-potential. Let S be a
positive closed (p, p)-current with a Hölder continuous super-potential. Then, the
Hausdorff dimension of S is strictly larger than 2(k− p). Moreover, S is moderate,
i.e. for any bounded family F of d.s.h. functions on Pk, there are constants c > 0
and α > 0 such that ∫

eα |u|dσS ≤ c

for every u in F , where σS is the trace measure of S.

Exercise A.52. Show that there is a constant c > 0 such that

cap(E) ≥ exp(−c/volume(E)).

Hint: use the compactness of P1 in L1.

Exercise A.53. Let (un) be a sequence of d.s.h. functions such that ∑‖un‖DSH
is finite. Show that ∑un converge pointwise out of a pluripolar set to a d.s.h.
function. Hint: write un = u+

n − u−n with u±n ≤ 0, ‖u±n ‖DSH " ‖un‖DSH and
ddcu±n ≥−‖un‖DSHωFS.

Exercise A.54. If χ is a convex increasing function on R with bounded derivative
and u is a d.s.h. function, show that χ ◦u is d.s.h. If χ is Lipschitz and u is in W ∗(Pk),
show that χ ◦ u is in W ∗(Pk). Prove that bounded d.s.h. functions are in W ∗(Pk).
Show that DSH(Pk) and W ∗(Pk) are stable under the max and min operations.
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Exercise A.55. Let µ be a non-zero positive measure which is WPC. Define

‖u‖∗µ := |〈µ ,u〉|+ min‖Θ‖1/2

withΘ as above. Show that ‖ · ‖∗µ defines a norm which is equivalent to ‖ · ‖W∗ .

Exercise A.56. Show that the capacity of R is positive if and only if R is PB.

Exercise A.57. Let S be a positive closed (p, p)-current of mass 1 with positive
Lelong number at a point a. Let H be a hyperplane containing a such that S and [H]
are wedgeable. Show that the Lelong number of S∧ [H] at a is the same if we con-
sider it as a current on Pk or on H. If R is a positive closed current of bidimension
(p−1, p−1) on H, show that US(R) ≤ US∧[H](R)+ c where c > 0 is a constant in-
dependent of S,R and H. Deduce that PB currents have no positive Lelong numbers.

Exercise A.58. Let K be a compact subset in Ck ⊂ Pk. Let S1, . . . ,Sp be
positive closed (1,1)-currents on Pk. Assume that their quasi-potentials are bounded
on Pk \ K. Show that S1, . . . ,Sp are wedgeable. Show that the wedge-product
S1 ∧ . . .∧Sp is continuous for Hartogs’ convergence.

Exercise A.59. Let S and S′ be positive closed (p, p)-currents on Pk such that
S′ ≤ S. Assume that S is PB (resp. PC). Show that S′ is PB (resp. PC).
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