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A conjecture by Green-Griffiths states that if X is a projective manifold of general type, then there
exists an algebraic proper subvariety of X which contains the image of all holomorphic curves from the
complex plane to X. The conjecture is far from being settled. I will question the choice of the complex
plane as a source space.

Let Y be a parabolic Riemann surface, i.e. bounded subharmonic functions defined on Y are con-
stant. The results of Nevanlinna’s theory for holomorphic maps f from Y to the projective line are
parallel to the classical case when Y is the complex line except for a term involving a weighted Euler
characteristic. Parabolic Riemann Surfaces could be Hyperbolic in the Kobayashi sense.

Let X be a manifold of general type, and let A be an ample line bundle on X. It is known that there
exists a holomorphic jet differential P (of order k) with values in the dual of A. If the map f has infinite
area and if Y has finite Euler characteristic, then f satisfies the differential relation induced by P.

As a consequence, we obtain a generalization of Bloch Theorem concerning the Zariski closure of maps
f with values in a complex torus.

We then study the degree of Nevanlinna’s current 7'[f] associated to a parabolic leaf of a foliation F'
by Riemann surfaces on a compact complex manifold. We show that the degree of T[f] on the tangent
bundle of the foliation is bounded from below in terms of the counting function of f with respect to the
singularities of F', and the Euler characteristic of Y. In the case of complex surfaces of general type,
we obtain a complete analogue of McQuillan’s result: a parabolic curve of infinite area and finite Euler
characteristic tangent to F' is not Zariski dense. That requires some analysis of the dynamics of foliations
by Riemann Surfaces.
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